\documentclass[12pt]{article} \begin{document} \textbf{Understanding $\Delta G$} \\ version = 1.00 of deltag.tex 2012 jun 14 by Tom Schneider \par For a system open to exchanges with its surroundings, a free energy change ($\Delta G$) is related to an enthalpy change ($\Delta H$) and to an entropy change ($\Delta S$): \begin{equation} \Delta G_{system} = \Delta H_{system} - T \Delta S_{system} . \label{eqn.deltaG.def} \end{equation} But by definition \begin{equation} \Delta H_{system} = - T \Delta S_{surroundings} \label{eqn.deltaH.def} \end{equation} so \begin{equation} \Delta G_{system} = - T \Delta S_{surroundings} - T \Delta S_{system} . \label{eqn.deltaG.deltaS} \end{equation} But \begin{equation} \Delta S_{surroundings} + \Delta S_{system} = \Delta S_{total} \label{eqn.deltaS.total} \end{equation} and therefore \begin{equation} \Delta G_{system} = - T \Delta S_{total} . \label{eqn.deltaG.deltaStotal} \end{equation} So $\Delta G_{system}$ represents the \emph{total\/} entropy increase (energy dissipation) during a reaction. \par source: Darnell1986. J.~Darnell, H.~Lodish, and D.~Baltimore. \emph{Molecular Cell Biology}. Scientific American Books, Inc., N. Y., 1986. \end{document}