## Biological Information Theory (BIT) gives a natural binding site cutoff

Thomas D. Schneider, Ph.D.
Molecular Information Theory Group RNA Biology Laboratory Center for Cancer Research National Cancer Institute Frederick, MD 21702-1201



CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001


CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001
- Founded Information Theory



## CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001
- Founded Information Theory
- Important papers: 1948

$T_{\text {HE recent development of various methods of modulation such as PCM and PPM which exchange }}^{\text {bandwidth for sionalto }}$ 1 bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist ${ }^{2}$ and Hartley ${ }^{2}$ on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the The fundamental $p$ proximately a messag to or are correlated acc aspects of communicat message is one selecte
possible selection not possible selection, not .
If the number of $m t$ can be regarded as an choices being equally function. Although thi statistics of the messa essenualy logatimic
The logarithmic $m e$

1. It is practically n
of relays, etc., te adding one relay doubles the loga
2 It is nearerto
2. It is neares to ou tuitively measu
two punched car channels twice ti
3. It is mathematic rithm but would
he choice of a lo base 2 is used the res J. W. Tukey. A device If the base 10 is used $t$
${ }^{1}{ }^{1}$ Nyquists. $\mathrm{H},$. Certain Fi Tlegraph Transmision hee
2Hartey. . V. L. Thans
CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001
- Founded Information Theory
- Important papers: 1948, 1949


## Communication in the Presence of Noise

CLAUDE E. SHANNON, MEMBER, IRE
Classic Paper

A method is developed for representing any commmication system geometrically. Messages and the corresponding signals ar points in two "fumction spaces," and the modulation process is a mapping of one space into the other. Using this representation, ing expansion and compression of bandwidth and the threshol effect. Formulas are found for the maximum rate of transmission of binary digits over a system when the signal is perturbed b various types of noise. Some of the properties of "ideal" system
which transmit at this maximum rate are discussed. The equivalent number of binary digits per second for certain information sources is calculated.
I. Introduction

A general communications system is shown schemati cally in Fig. 1. It consists essentially of five elements. 1) An Information Source: The source selects one mes the receiving a possible messages to be transmitted tpes; for exale, a sequace of ters or oubers in telegraphy or teletype or a continuous function of time $f(t)$, as in radio or telephony.
2) The Transmitter: This operates on the message some way and produces a signal suitable for transmissio the recerving point over the channel. In telephony, this operation consists of merely changing sound pressure int a proportional electrical current. In telegraphy, we have a encoding operation which produces a sequence of dots, dashes, and spaces corresponding to the letters of the multiplex PCM telephony the different speech fuctions must be sampled compressed quantized and encoded and nust be sampled, compressed, quantized and encoded, finally interleaved properly to construct the signal.
3) The Channel: This is merely the medium used to transmit the signal from the transmitting to the receiving point. It may be a pair of wires, a coaxial cable, a band of radio frequencies, etc. During transmission, or at the receiving terminal, the signal may be perturbed by noise or distortion. Noise and distortion may be differentiated on the basis that distortion is a fixed operation applied to the signal, while noise involves statistical and unpredictabl This paper is reprinted from me PROCEBDNGS of The RE, vol. 37 , no
pp. $10-21$, Jan. 1949 . Ppulioliher Item Identififer S 0018-9219(98)01299-7.


Tig. 1. General communications system.
perturbations. Distortion can, in principle, be corrected by pplying the inverse operation, while a perturbation due to oise cannot always be removed, since the signal does not ways undergo the same change during transmission
4) The Receiver: This operates on the received signa and attempts to reproduce, from it, the orignal message. Ordinarily it will perform approximately the mathematical nverse of the operations of the transmitter, although they ay differ somewhat with best design in order to comb 5)
estination: This is the person or thing for whom he message is intended.
Following Nyquist ${ }^{1}$ and Hartley ${ }^{2}$ it is convenient to use a logarithmic measure of information. If a device has possible positions it can, by definition, store $\log _{,} n$ units of nformation. The choice of the base $b$ amounts to a choic of unit, since $\log _{b} n=\log _{b} c \log _{c} n$. We will use the bas and call the resultang units binary digits or bits. A group of $m$ relays or flip-flop circuits has $2^{m}$ possible sets positions, and can therefore store $\log _{2} 2^{m}=m$ bits If it is possible to distinguish reliably $M$ different signa hans of duration $Y$ on a channel, we can say that ansmission is then $\log _{2} M / T$. More precisely the channel capacity may be defined as

$$
\begin{equation*}
C=\lim _{T \rightarrow \infty} \frac{\log _{2} M}{T} \tag{1}
\end{equation*}
$$

${ }^{1}{ }^{1} \mathrm{H}$. . Nyquists. "Certain factors affecting telegraph speed," Bell Syst. Tech. ²R. V. L. Harley. "The transmission of information," Bell Syst. Tech
J., vol. 3. p. 535-564, July 1928 .

$T^{\mathrm{HE}}$ recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist ${ }^{2}$ and Hartley $^{2}$ on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the in the channel, and the savings possible due to the statistical structure of the original message and due to the The fundamental $p$ proximately a message to or are correlated ac aspects of commumicat
message is one selecte message is one selecte If the number of mt can be regarded as a n choices being equally function. Although thi statistics of the messa essentially loganthmic
The logarithmic $m e$
.

1. It is practically $n$
of relays, etc., te adding one relay doubles the loga
2. It is nearerto
3. It is nearer to ou tuitively measu
two punched c channels twice ti
4. It is mathemati nithm but would
e choice of a lo base 2 is used the res J. W. Tukey. A device If the base 10 is used $t$

CLAUDE E. SHANNON

- April 30, 1916 - February 24, 2001
- Founded Information Theory
- Important papers: 1948, 1949
- Result: modern communications!


## Communication in the Presence of Noise

CLAUDE E. SHANNON, MEMBER, IRE
Classic Paper


0018-9219/988510.00 © 1998 IEEE

## number of number symbols of bits example

M
B
2
1
(H)T
42
1110
0100
8
3
$M=2^{B}$
$B=\log _{2} M$


## Information Theory: One-Minute Lesson

## number of number symbols of bits example

M
B
2
1
42
1110
0100
83
$M=2^{B}$
$B=\log _{2} M$




4
2 3
$M=2^{B}$
$B=\log _{2} M$


## Information Theory: One-Minute Lesson

 $\begin{array}{ll}\text { number of } & \begin{array}{l}\text { number } \\ \text { of bits }\end{array} \text { example }\end{array}$
$\begin{array}{ll}\text { number of } & \begin{array}{l}\text { number } \\ \text { of bits }\end{array} \quad \text { example }\end{array}$
M B

2
1
HT


4
2

3
$M=2^{B}$
$B=\log _{2} M$


El Duomo, Florence, Italy


## T7 RNA polymerase + DNA



Sequence Logo
17 Bacteriophage T7 RNA polymerase binding sites


1 ttattaatacaactcactataaggagag
2 aaatcaatacgactcactatagagggac
3 cggttaatacgactcactataggagaac
4 gaagtaatacgactcagtatagggacaa
5 taattaattgaactcactaaagggagac
6 cgcttaatacgactcactaaaggagaca
6 of 17 sites
Schneider \& Stephens Nucl. Acids Res. 18: 6097-6100 1990

Sequence Logo
17 Bacteriophage T7 RNA polymerase binding sites


Schneider \& Stephens Nucl. Acids Res. 18: 6097-6100 1990

2 aaatcaatacgactcactatagagggac
3 cggttaatacgactcactataggagaac
4 gaagtaatacgactcagtatagggacaa
5 taattaattgaactcactaaagggagac
6 cgcttaatacgactcactaaaggagaca
6 of 17 sites
2 bits/base

Sequence Logo
17 Bacteriophage T7 RNA polymerase binding sites


Sequence Logo
17 Bacteriophage T7 RNA polymerase binding sites


Sequence Logo
17 Bacteriophage T7 RNA polymerase binding sites


## Individual Information

## Sequence Logo and Sequence Walker

17 Bacteriophage T7 RNA polymerase binding sites


1 ttattaatacaactcactataaggagag 33.3
2 aatcaatacgactcactatagagggac 37.4
3 cggttaatacgactcactataggagaac 34.4
4 gaagtaatacgactcagtatagggacaa 33.1
5 taattaattgaactcactaaagggagac 30.1


Sequence
Walker
Patent
5,867,402

Sequence Logo and Sequence Walker and Rsequence
17 Bacteriophage T7 RNA polymerase binding sites


Rsequence is the average: $35.0 \pm 0.6$ bits

## Sequence Logo and Sequence Walker and Rsequence

17 Bacteriophage T7 RNA polymerase binding sites


Rsequence is the average $=3{ }^{\text {madet }}$ anderitshe logo"

More Information Theory - 1

## An Intuitive Approach

Information to chose one symbol from $M$ symbols:

$$
\begin{equation*}
\log _{2} M \tag{1}
\end{equation*}
$$

## An Intuitive Approach

Information to chose one symbol from $M$ symbols:

$$
\begin{align*}
\log _{2} M & =-\log _{2} 1 / M . \tag{1}
\end{align*}
$$

$1 / M$ is like the probability of a symbol.

## More Information Theory - 1

## An Intuitive Approach

Information to chose one symbol from $M$ symbols:

$$
\begin{align*}
\log _{2} M & =-\log _{2} 1 / M . \tag{1}
\end{align*}
$$

$1 / M$ is like the probability of a symbol.
If the probabilities $P_{i}$ of different symbols, $i$, are not equal, then the surprisal is:

$$
\begin{equation*}
u_{i} \equiv-\log _{2} P_{i} . \tag{2}
\end{equation*}
$$

how surprised one is to see a symbol

## EXAMPLE

A phone rings once every 1024 seconds.


$$
\begin{align*}
P_{\text {ring }} & =1 / 1024  \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

## More Information Theory - 2

## EXAMPLE

A phone rings once every 1024 seconds.


$$
\begin{align*}
P_{\text {ring }} & =1 / 1024  \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

Surprisal:

$$
\begin{align*}
\text { surprisal }_{\text {ring }} & =-\log _{2}(1 / 1024)=10 \text { bits }  \tag{5}\\
\text { surprisal }_{\text {silent }} & =-\log _{2}(1023 / 1024) \approx 0 \text { bits } \tag{6}
\end{align*}
$$

## More Information Theory - 2

## EXAMPLE

A phone rings once every 1024 seconds.


$$
\begin{align*}
P_{\text {ring }} & =1 / 1024  \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

Surprisal:

$$
\begin{align*}
\text { surprisal }_{\text {ring }} & =-\log _{2}(1 / 1024)=10 \text { bits }  \tag{5}\\
\text { surprisal }_{\text {silent }} & =-\log _{2}(1023 / 1024) \approx 0 \text { bits } \tag{6}
\end{align*}
$$

The average surprisal is called the uncertainty, $H$ :

$$
H=P_{\text {ring }} \times \text { surprisal }_{\text {ring }}
$$

## More Information Theory - 2

## EXAMPLE

A phone rings once every 1024 seconds.


$$
\begin{align*}
P_{\text {ring }} & =1 / 1024  \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

Surprisal:

$$
\begin{align*}
\text { surprisal }_{\text {ring }} & =-\log _{2}(1 / 1024)=10 \text { bits }  \tag{5}\\
\text { surprisal }_{\text {silent }} & =-\log _{2}(1023 / 1024) \approx 0 \text { bits } \tag{6}
\end{align*}
$$

The average surprisal is called the uncertainty, $H$ :

$$
\begin{equation*}
H=P_{\text {ring }} \times \text { surprisal }_{\text {ring }}+P_{\text {silent }} \times \text { surprisal }_{\text {silent }} \tag{7}
\end{equation*}
$$

## More Information Theory - 2

## EXAMPLE

A phone rings once every 1024 seconds.


$$
\begin{align*}
P_{\text {ring }} & =1 / 1024  \tag{3}\\
P_{\text {silent }} & =1023 / 1024 \tag{4}
\end{align*}
$$

Surprisal:

$$
\begin{align*}
\text { surprisal }_{\text {ring }} & =-\log _{2}(1 / 1024)=10 \text { bits }  \tag{5}\\
\text { surprisal }_{\text {silent }} & =-\log _{2}(1023 / 1024) \approx 0 \text { bits } \tag{6}
\end{align*}
$$

The average surprisal is called the uncertainty, $H$ :

$$
\begin{gather*}
H=P_{\text {ring }} \times \text { surprisal }_{\text {ring }}+P_{\text {silent }} \times \text { surprisal }_{\text {silent }}  \tag{7}\\
H=P_{\text {ring }} \times\left(-\log _{2}\left(P_{\text {ring }}\right)\right)+P_{\text {silent }} \times\left(-\log _{2}\left(P_{\text {silent }}\right)\right) \tag{8}
\end{gather*}
$$

For $M$ symbols use the sum $\left(\sum\right)$ notation:

$$
H=\sum_{i=1}^{M} P_{i} \times\left(\text { surprisal for } P_{i}\right)
$$

For $M$ symbols use the sum $\left(\sum\right)$ notation:

$$
\begin{align*}
H & =\sum_{i=1}^{M} P_{i} \times\left(\text { surprisal for } P_{i}\right)  \tag{9}\\
& =\sum_{i=1}^{M} P_{i} \times\left(-\log _{2} P_{i}\right)
\end{align*}
$$

For $M$ symbols use the sum $\left(\sum\right)$ notation:

$$
\begin{align*}
H & =\sum_{i=1}^{M} P_{i} \times\left(\text { surprisal for } P_{i}\right)  \tag{9}\\
& =\sum_{i=1}^{M} P_{i} \times\left(-\log _{2} P_{i}\right)  \tag{10}\\
& =-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol }
\end{align*}
$$

More Information Theory - Example

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

More Information Theory - Example

$$
\begin{gather*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol }  \tag{1}\\
\text { Simplified Example } \\
\begin{array}{l}
\text { For two symbols, plot the uncertainty } \\
M=2, \quad P_{1}+P_{2}=1
\end{array} \tag{2}
\end{gather*}
$$

More Information Theory - Example

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

Simplified Example For two symbols, plot the uncertainty

$$
\begin{equation*}
M=2, \quad P_{1}+P_{2}=1 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
P_{2}=1-P_{1} \tag{3}
\end{equation*}
$$

More Information Theory - Example

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

Simplified Example For two symbols, plot the uncertainty

$$
\begin{gather*}
M=2, \quad P_{1}+P_{2}=1  \tag{2}\\
P_{2}=1-P_{1}  \tag{3}\\
H=\quad-P_{1} \log _{2} P_{1} \tag{4}
\end{gather*}
$$

## More Information Theory - Example

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

Simplified Example For two symbols, plot the uncertainty

$$
\begin{equation*}
M=2, \quad P_{1}+P_{2}=1 \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
P_{2}=1-P_{1}  \tag{3}\\
H=\begin{array}{c}
P_{1} \log _{2} P_{1} \\
+ \\
-P_{2} \log _{2} P_{2}
\end{array} . \tag{4}
\end{gather*}
$$

$$
\begin{equation*}
H=-P_{1} \log _{2} P_{1}+\left(-\left(1-P_{1}\right) \log _{2}\left(1-P_{1}\right)\right) \tag{5}
\end{equation*}
$$

## More Information Theory - Example

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

Simplified Example For two symbols, plot the uncertainty

$$
\begin{equation*}
M=2, \quad P_{1}+P_{2}=1 \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
P_{2}=1-P_{1}  \tag{3}\\
H=\begin{array}{c}
-P_{1} \log _{2} P_{1} \\
+ \\
-P_{2} \log _{2} P_{2}
\end{array} . \tag{4}
\end{gather*}
$$



## More Information Theory - Example

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

Simplified Example For two symbols, plot the uncertainty

$$
\begin{equation*}
M=2, \quad P_{1}+P_{2}=1 \tag{2}
\end{equation*}
$$

$$
P_{2}=1-P_{1}
$$

$$
H=-P_{1} \log _{2} P_{1}
$$

$$
+
$$

$$
-P_{2} \log _{2} P_{2}
$$

uncertainty, H (bits)


## More Information Theory - Example

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

Simplified Example For two symbols, plot the uncertainty

$$
\begin{equation*}
M=2, \quad P_{1}+P_{2}=1 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
P_{2}=1-P_{1} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
H=-P_{1} \log _{2} P_{1} \tag{4}
\end{equation*}
$$

$$
+
$$

$H=-P_{1} \log _{2} P_{1}+\left(-\left(1-P_{1}\right) \log _{2}\left(1-P_{1}\right)\right)$
NOTE 1: $\lim _{P \rightarrow 0} P \log _{2} P=0$
NOTE 2: The curve peaks at $P_{1}=0.5$ when $P_{1}=\left(1-P_{1}\right)=P_{2}$.

$$
\begin{equation*}
-P_{2} \log _{2} P_{2} \tag{5}
\end{equation*}
$$



## More Information Theory - Example

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

Simplified Example For two symbols, plot the uncertainty

$$
\begin{equation*}
M=2, \quad P_{1}+P_{2}=1 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
P_{2}=1-P_{1} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
H=-P_{1} \log _{2} P_{1} \tag{4}
\end{equation*}
$$

$$
+
$$

$$
\begin{equation*}
-P_{2} \log _{2} P_{2} \tag{5}
\end{equation*}
$$

$H=-P_{1} \log _{2} P_{1}+\left(-\left(1-P_{1}\right) \log _{2}\left(1-P_{1}\right)\right)$
NOTE 1: $\lim _{P \rightarrow 0} P \log _{2} P=0$
NOTE 2: The curve peaks at $P_{1}=0.5$ when $P_{1}=\left(1-P_{1}\right)=P_{2}$.

Maximum uncertainty is at equal probability.


## More Information Theory - Maximum

$$
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \quad \text { uncertainty, } \mathrm{H} \text { (bits) }
$$



## More Information Theory - Maximum

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

uncertainty, H (bits)
All Equiprobable Symbols

$$
P_{i}=\frac{1}{M}, \text { for all } i
$$



## More Information Theory - Maximum

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

uncertainty, H (bits)
All Equiprobable Symbols

$$
\begin{aligned}
P_{i} & =\frac{1}{M}, \text { for all } i \\
H & =-\sum_{i=1}^{M} \frac{1}{M} \log _{2} \frac{1}{M}
\end{aligned}
$$



## More Information Theory - Maximum

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

uncertainty, H (bits)

All Equiprobable Symbols

$$
P_{i}=\frac{1}{M}, \text { for all } i
$$

$$
\begin{equation*}
H=-\sum_{i=1}^{M} \frac{1}{M} \log _{2} \frac{1}{M} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
H=-\left(\frac{1}{M} \log _{2} \frac{1}{M}\right) \sum_{i=1}^{M} 1 \tag{4}
\end{equation*}
$$



## More Information Theory - Maximum

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

uncertainty, H (bits)

## All Equiprobable Symbols

$$
\begin{gather*}
P_{i}=\frac{1}{M}, \text { for all } i \\
H=-\sum_{i=1}^{M} \frac{1}{M} \log _{2} \frac{1}{M}  \tag{3}\\
H=-\left(\frac{1}{M} \log _{2} \frac{1}{M}\right) \sum_{i=1}^{M} 1  \tag{4}\\
H=-\left(\frac{1}{M} \log _{2} \frac{1}{M}\right) M \tag{5}
\end{gather*}
$$

## More Information Theory - Maximum

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

uncertainty, H (bits)

## All Equiprobable Symbols

$$
\begin{gather*}
P_{i}=\frac{1}{M}, \text { for all } i \\
H=-\sum_{i=1}^{M} \frac{1}{M} \log _{2} \frac{1}{M}  \tag{3}\\
H=-\left(\frac{1}{M} \log _{2} \frac{1}{M}\right) \sum_{i=1}^{M} 1  \tag{4}\\
H=-\left(\frac{1}{M} \log _{2} \frac{1}{M}\right) M  \tag{5}\\
H=-\log _{2} \frac{1}{M} \tag{6}
\end{gather*}
$$

## More Information Theory - Maximum

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

uncertainty, H (bits)

## All Equiprobable Symbols

$$
\begin{gather*}
P_{i}=\frac{1}{M}, \text { for all } i \\
H=-\sum_{i=1}^{M} \frac{1}{M} \log _{2} \frac{1}{M}  \tag{3}\\
H=-\left(\frac{1}{M} \log _{2} \frac{1}{M}\right) \sum_{i=1}^{M} 1  \tag{4}\\
H=-\left(\frac{1}{M} \log _{2} \frac{1}{M}\right) M  \tag{5}\\
H=-\log _{2} \frac{1}{M}  \tag{6}\\
H=\log _{2} M \tag{7}
\end{gather*}
$$

## More Information Theory - Maximum

$$
\begin{equation*}
H=-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { bits per symbol } \tag{1}
\end{equation*}
$$

uncertainty, H (bits)
All Equiprobable Symbols

$$
\begin{gather*}
P_{i}=\frac{1}{M}, \text { for all } i \\
H=-\sum_{i=1}^{M} \frac{1}{M} \log _{2} \frac{1}{M}  \tag{3}\\
H=-\left(\frac{1}{M} \log _{2} \frac{1}{M}\right) \sum_{i=1}^{M} 1  \tag{4}\\
H=-\left(\frac{1}{M} \log _{2} \frac{1}{M}\right) M  \tag{5}\\
H=-\log _{2} \frac{1}{M}  \tag{6}\\
H=\log _{2} M \tag{7}
\end{gather*}
$$



Maximum uncertainty is at equal probability.

## Information required to find a set of binding sites

$G=\#$ of potential binding sites

## Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases

## Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases
$\gamma=$ number of binding sites on genome

## Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases
$\gamma=$ number of binding sites on genome

$$
R_{\text {frequency }}=H_{\text {before }}-H_{a f t e r}
$$

## Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases
$\gamma=$ number of binding sites on genome

$$
\begin{aligned}
R_{\text {frequency }} & =H_{\text {before }}-H_{a f t e r} \\
& =\log _{2} G-\log _{2} \gamma
\end{aligned}
$$

## Information required to find a set of binding sites

$G=\#$ of potential binding sites
$=$ genome size in some cases
$\gamma=$ number of binding sites on genome

$$
\begin{aligned}
R_{\text {frequency }} & =H_{\text {before }}-H_{a f t e r} \\
& =\log _{2} G-\log _{2} \gamma \\
& =-\log _{2} \gamma / G
\end{aligned}
$$

## Rfrequency

Information required to find a set of binding sites in a genome


16 positions
1 site
$\log _{2} 16 / 1=4$ bits


16 positions
2 sites
$\log _{2} 16 / 2=3$ bits


Copy DNA (transcription)


Spliced RNA

| exon | exon | exon |
| :--- | :--- | :--- |

Donor and acceptor logos

donor


## Rsequence and Rfrequency for Splice Acceptors

## $R_{\text {sequence }}$

- Information at binding site sequences (area under sequence logo)
- from: binding site sequences
- 9.4 bits per site


## Rsequence and Rfrequency for Splice Acceptors

## $R_{\text {sequence }}$



- Information at binding site sequences (area under sequence logo)
- from: binding site sequences
- 9.4 bits per site
$R_{\text {frequency }}$

- Information needed to locate the sites
- from: size of genome and number of sites (length of intron+exon)
- 9.7 bits per site

$$
R_{\text {frequency }} / R_{\text {sequence }}=0.97
$$

Rsequence $=$ Rfrequency Hypothesis

> Hypothesis:
> The information in binding site patterns is just sufficient for the sites to be found in the genome

| Binding Site <br> Recognizer |  |  |  |
| :--- | :--- | :---: | :--- |
|  | Total Pattern <br> Information <br> $=\mathbf{R}_{\text {sequence }}$ <br> (bits) | Information needed to <br> Locate <br> $=\mathbf{R}_{\text {frequency }}$ <br> (bits) | $\frac{\text { Pattern Info }}{\text { Location Info }}$ <br> $=\frac{\mathbf{R}_{\text {sequence }}}{\mathbf{R}_{\text {frequency }}}$ |
| Spliceosome acceptor $^{2}$ | $\mathbf{9 . 3 5} \pm \mathbf{0 . 1 2}$ | $\mathbf{9 . 6 6}$ | $\mathbf{0 . 9 7} \pm \mathbf{0 . 0 1}$ |
| Spliceosome donor | $\mathbf{7 . 9 2} \pm \mathbf{0 . 0 9}$ | $\mathbf{9 . 6 6}$ | $\mathbf{0 . 8 2} \pm \mathbf{0 . 0 1}$ |
| Ribosome | $\mathbf{1 1 . 0}$ | $\mathbf{1 0 . 6}$ | $\mathbf{1 . 0}$ |
| $\lambda$ cl/cro | $\mathbf{1 7 . 7} \pm \mathbf{1 . 6}$ | $\mathbf{1 9 . 3}$ | $\mathbf{0 . 9} \pm \mathbf{0 . 1}$ |
| LexA | $\mathbf{2 1 . 5} \pm \mathbf{1 . 7}$ | $\mathbf{1 8 . 4}$ | $\mathbf{1 . 2} \pm \mathbf{0 . 1}$ |
| TrpR | $\mathbf{2 3 . 4} \pm \mathbf{1 . 9}$ | $\mathbf{2 0 . 3}$ | $\mathbf{1 . 2} \pm \mathbf{0 . 1}$ |
| Lacl | $\mathbf{1 9 . 2} \pm \mathbf{2 . 8}$ | $\mathbf{2 1 . 9}$ | $\mathbf{0 . 9} \pm \mathbf{0 . 1}$ |
| ArgR | $\mathbf{1 6 . 4}$ | $\mathbf{1 8 . 4}$ | $\mathbf{0 . 9}$ |
| O $(\lambda$ Origin) | $\mathbf{2 0 . 9}$ | $\mathbf{1 9 . 9}$ | $\mathbf{1 . 0}$ |
| AraC | $\mathbf{1 9 . 3}$ | $\mathbf{1 9 . 3}$ | $\mathbf{1 . 0}$ |
| Transcription at TATA ${ }^{3}$ | $\mathbf{3 . 3}$ | $\sim \mathbf{3}$ | $\sim \mathbf{1}$ |
| T7 Promoter | $\mathbf{3 5 . 4}$ | $\mathbf{1 6 . 5}$ | $\mathbf{2 . 1}$ |

[^0]
## $R_{\text {sequence }}$ versus $R_{\text {frequency }}$-meaning

The information in the binding site pattern ( $R_{\text {sequence }}$ ) is close to
The information needed to find the binding sites ( $R_{\text {frequency }}$ )

## $R_{\text {sequence }}$ versus $R_{\text {frequency }}$ - meaning

The information in the binding site pattern ( $R_{\text {sequence }}$ ) is close to
The information needed to find the binding sites ( $R_{\text {frequency }}$ )
But for a species in a stable environment:

- size of genome $(G)$ is fixed (e. g. E. coli has $4.7 \times 10^{6}$ bp)
- number of binding sites $(\gamma)$ is fixed (e. g. there are $\sim 50$ E. coli LexA sites) so $R_{\text {frequency }}=\log _{2} G / \gamma$ is fixed


## $R_{\text {sequence }}$ versus $R_{\text {frequency }}$ - meaning

The information in the binding site pattern $\left(R_{\text {sequence }}\right)$ is close to
The information needed to find the binding sites ( $R_{\text {frequency }}$ )
But for a species in a stable environment:

- size of genome $(G)$ is fixed (e. g. E. coli has $4.7 \times 10^{6}$ bp)
- number of binding sites $(\gamma)$ is fixed (e. g. there are $\sim 50$ E. coli LexA sites) so $R_{\text {frequency }}=\log _{2} G / \gamma$ is fixed

Rsequence must evolve towards Rfrequency!

## Evolution of Binding Sites

- $\quad R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$


## Evolution of Binding Sites

- $\quad R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency }}$ ?
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- a defined genome size $(G)$
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- a defined genome size $(G)$
- predetermined binding site locations $(\gamma)$ (to fix the frequency of sites)
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- a defined genome size $(G)$
- predetermined binding site locations $(\gamma)$ (to fix the frequency of sites)
$R_{\text {frequency }}$ is fixed
- $R_{\text {frequency }}$ is fixed relative to $R_{\text {sequence }}$
- Does $R_{\text {sequence }}$ evolve toward $R_{\text {frequency? }}$

Setup a Computer Model, 'Ev':
A population of "creatures" with

- genomes containing 4 bases (A, C, G, T)
- a defined genome size $(G)$
- predetermined binding site locations $(\gamma)$ (to fix the frequency of sites)
$R_{\text {frequency }}$ is fixed
- a recognizer gene encoded in the sequence: use a weight matrix


## How A Weight Matrix Works

Sequence matrix, $s(b, l, j)$ for sequence $j$

| base b | position 1 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | A | G | G | T | C | T | G | C | A |
|  | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| A | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| C | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| G | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| T | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |

Individual information weight matrix, $R_{i w}(b, l)$

| base b | position 1 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| A | +0.4 | +1.3 | -1.4 | -8.8 | -5.8 | +1.1 | +1.5 | -1.8 | -0.7 | +0.0 |
| C | +0.6 | -0.8 | -2.4 | -7.8 | -5.5 | -3.7 | -1.6 | -2.2 | -0.5 | -0.2 |
| G | -0.6 | -1.0 | +1.6 | $\boxed{+2.0}$ | -6.2 | +0.7 | -1.1 | +1.7 | -0.3 | +0.4 |
| T | -1.0 | -0.9 | -1.7 | -5.8 | +2.0 | -3.4 | -1.6 | -2.2 | +0.9 | -0.5 |

## Unevolved Ev Creature



## Unevolved Ev Creature



## Unevolved Ev Creature



## Unevolved Ev Creature



Genome positions available $G=256$ bases $R_{\text {frequency }}=\log _{2} 256 / 16=4$ bits

## Unevolved Ev Creature



## Unevolved Ev Creature



## Unevolved Ev Creature



## - EVALUATE each creature

- EVALUATE each creature
- translate the recognizer gene into a weight matrix

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
$\square$ missing a site at a right place



## Evolution Cycle

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
$\square$ missing a site at a right place
$\square$ finding a site at a wrong place



## Evolution Cycle

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
$\square$ missing a site at a right place
$\square$ finding a site at a wrong place
- Sort the creatures by their mistakes



## Evolution Cycle

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
$\square$ missing a site at a right place
$\square$ finding a site at a wrong place
- Sort the creatures by their mistakes
- REPLICATE: the best creatures are duplicated and replace the worst ones



## Evolution Cycle

- EVALUATE each creature
- translate the recognizer gene into a weight matrix
- scan the weight matrix across the genome
- count the number of mistakes:
$\square$ missing a site at a right place
$\square$ finding a site at a wrong place
- Sort the creatures by their mistakes
- REPLICATE: the best creatures are duplicated and replace the worst ones
- MUTATE all genomes randomly


$$
\begin{aligned}
& \begin{array}{llllllllll}
2 A-133 & 2 C-471 & 2 G-450 & 2 T+28 & 3 A+165 & 3 C+335 & 3 G-73 & 3 T-357 & & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C A A T T G T A C A A C T G A AlG A C A G }
\end{aligned}
$$



Evolution of Binding Sites


Evolution of Binding Sites


Evolution of Binding Sites


Donor and acceptor logos

donor


Human Splice Junction Information Curves


- The consensus sequences match ...

Human Splice Junction Information Curves


- The consensus sequences match ...

Human Splice Junction Information Curves


- The consensus sequences match ...

Human Splice Junction Information Curves


- The consensus sequences match ...

Human Splice Junction Information Curves


- The consensus sequences match ...

Human Splice Junction Information Curves


- The consensus sequences match ...

Human Splice Junction Information Curves


- The consensus sequences match ...

Human Splice Junction Information Curves


- The consensus sequences match...
- BUT the information curves (sequence conservation) differ!

Human Splice Junction Information Curves


Position L (in bases)


Position L (in bases)
C A G - G T

- The consensus sequences match...
- BUT the information curves (sequence conservation) differ!
- Put letters into the graph proportional to their frequency!

Human Splice Junction Information Curves


- That's how and why we invented sequence logos!
https://alum.mit.edu/www/toms/papers/logo/

Splice Junction Sequence Logos


## Splice Junction Sequence Logos



- $90 \%$ of the splice junction information is on the intron side
- Hypothesis:
$5^{\prime}$ donor and acceptor sites had a common ancestor that duplicated
donor
intron



## Splice Junction Sequence Logos



- $90 \%$ of the splice junction information is on the intron side
- Hypothesis: donor and acceptor sites had a common ancestor that duplicated
- They evolved to put the information into the intron. This avoids affecting the proteins.
donor



## Information is a Decrease of Uncertainty

- Before binding a recognizer is anywhere on the nucleic acid


## Information is a Decrease of Uncertainty

- Before binding a recognizer is anywhere on the nucleic acid
- After binding a recognizer is at its binding sites


## Information is a Decrease of Uncertainty

- Before binding a recognizer is anywhere on the nucleic acid
- After binding a recognizer is at its binding sites
- Information $R$ is a decrease of uncertainty:

$$
R=-\Delta H=H_{\text {before }}-H_{a f t e r}
$$

## Information is a Decrease of Uncertainty

- Before binding a recognizer is anywhere on the nucleic acid
- After binding a recognizer is at its binding sites
- Information $R$ is a decrease of uncertainty:

$$
R=-\Delta H=H_{\text {before }}-H_{a f t e r}
$$

- This is how both Rsequence and Rfrequency were defined.

More Information Theory - Individual Information

- Information at position $l$ as in a sequence logo:

$$
\begin{aligned}
R_{\text {sequence }}(l) & =H_{\text {before }}-H_{\text {after }}(l) \\
& =2-H_{\text {after }}(l)
\end{aligned}
$$

- Information at position $l$ as in a sequence logo:

$$
\begin{aligned}
R_{\text {sequence }}(l) & =H_{\text {before }}-H_{\text {after }}(l) \\
& =2-H_{\text {after }}(l)
\end{aligned}
$$

- Individual Information matrix (difference of surprisals) for base $b$ at position $l$, based on frequency of bases $f(b, l)$ :

$$
\operatorname{Ri}(b, l)=2-\left(-\log _{2} f(b, l)+e(l)\right)
$$

$e(l)=$ small sample correction.

- Information at position $l$ as in a sequence logo:

$$
\begin{aligned}
R_{\text {sequence }}(l) & =H_{\text {before }}-H_{\text {after }}(l) \\
& =2-H_{\text {after }}(l)
\end{aligned}
$$

- Individual Information matrix (difference of surprisals) for base $b$ at position $l$, based on frequency of bases $f(b, l)$ :

$$
\operatorname{Ri}(b, l)=2-\left(-\log _{2} f(b, l)+e(l)\right)
$$

$e(l)=$ small sample correction.

- Applied and averaged over a set of sequences
$R i(b, l)$ gives the area under the logo


## More Information Theory - Individual Information

- Information at position $l$ as in a sequence logo:

$$
\begin{aligned}
R_{\text {sequence }}(l) & =H_{\text {before }}-H_{\text {after }}(l) \\
& =2-H_{\text {after }}(l)
\end{aligned}
$$

- Individual Information matrix (difference of surprisals) for base $b$ at position $l$, based on frequency of bases $f(b, l)$ :

$$
R i(b, l)=2-\left(-\log _{2} f(b, l)+e(l)\right)
$$

$e(l)=$ small sample correction.

- Applied and averaged over a set of sequences
$R i(b, l)$ gives the area under the logo
- Proven by John Spouge (NIH, NLM) to be unique


## Individual Information Curves

1657 Human splice donor binding sites



1288 Human splice acceptor binding sites




## Relating Uncertainty H to physical entropy S

- Uncertainty with probabilities $P_{i}$ and $M$ states:

$$
H \equiv-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { (bits per state) }
$$

## Relating Uncertainty H to physical entropy S

- Uncertainty with probabilities $P_{i}$ and $M$ states:

$$
H \equiv-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { (bits per state) }
$$

- Boltzmann-Gibbs entropy for $\Omega$ microstates:

$$
S \equiv-k_{\mathrm{B}} \sum_{i=1}^{\Omega} P_{i} \ln P_{i} \quad\left(\frac{\text { joules }}{\mathrm{K} \cdot \text { microstate }}\right)
$$

## Relating Uncertainty H to physical entropy S

- Uncertainty with probabilities $P_{i}$ and $M$ states:

$$
H \equiv-\sum_{i=1}^{M} P_{i} \log _{2} P_{i} \quad \text { (bits per state) }
$$

- Boltzmann-Gibbs entropy for $\Omega$ microstates:

$$
S \equiv-k_{\mathrm{B}} \sum_{i=1}^{\Omega} P_{i} \ln P_{i} \quad\left(\frac{\text { joules }}{\mathrm{K} \cdot \text { microstate }}\right)
$$

- $H$ relates to $S$ when symbols $M=$ microstates $\Omega$ :

$$
S=k_{\mathrm{B}} \ln (2) H
$$

Thermal Noise, Sound and Isothermal binding

- Thermal noise hitting a molecule is sound in all directions, at all frequencies (up to a cutoff)

Thermal Noise, Sound and Isothermal binding

- Thermal noise hitting a molecule is sound in all directions, at all frequencies (up to a cutoff)
- The speed of sound is 1.5 nm per picosecond in sea water at $25^{\circ} \mathrm{C}$

Thermal Noise, Sound and Isothermal binding

- Thermal noise hitting a molecule is sound in all directions, at all frequencies (up to a cutoff)
- The speed of sound is 1.5 nm per picosecond in sea water at $25^{\circ} \mathrm{C}$
- Sound crosses the 2 nm diameter of DNA in 1.3 picoseconds


## Thermal Noise, Sound and Isothermal binding

- Thermal noise hitting a molecule is sound in all directions, at all frequencies (up to a cutoff)
- The speed of sound is 1.5 nm per picosecond in sea water at $25^{\circ} \mathrm{C}$
- Sound crosses the 2 nm diameter of DNA in 1.3 picoseconds
- So heat leaves a binding DNA or RNA recognizer in picoseconds!


## Thermal Noise, Sound and Isothermal binding

- Thermal noise hitting a molecule is sound in all directions, at all frequencies (up to a cutoff)
- The speed of sound is 1.5 nm per picosecond in sea water at $25^{\circ} \mathrm{C}$
- Sound crosses the 2 nm diameter of DNA in 1.3 picoseconds
- So heat leaves a binding DNA or RNA recognizer in picoseconds!
- Equilibration is so fast that the Before and After states are at the same temperature


## Thermal Noise, Sound and Isothermal binding

- Thermal noise hitting a molecule is sound in all directions, at all frequencies (up to a cutoff)
- The speed of sound is 1.5 nm per picosecond in sea water at $25^{\circ} \mathrm{C}$
- Sound crosses the 2 nm diameter of DNA in 1.3 picoseconds
- So heat leaves a binding DNA or RNA recognizer in picoseconds!
- Equilibration is so fast that the Before and After states are at the same temperature
- $T$ is constant, binding is isothermal
- Clausius inequality for heat $Q$ into the system:

$$
d S \geq \frac{d Q}{T}
$$

- Clausius inequality for heat $Q$ into the system:

$$
d S \geq \frac{d Q}{T}
$$

- Integrate with $T$ constant for isothermal biological processes:

$$
\Delta S \geq \frac{Q}{T}
$$

- Clausius inequality for heat $Q$ into the system:

$$
d S \geq \frac{d Q}{T}
$$

- Integrate with $T$ constant for isothermal biological processes:

$$
\Delta S \geq \frac{Q}{T}
$$

- Substitute for $\Delta S$ to $\Delta H$ and then to $R$ :

$$
k_{\mathrm{B}} T \ln (2) \leq \frac{-Q}{R} \quad \text { (joules per bit) }
$$

## Minimum Energy Dissipated per Bit

- Minimum energy dissipated to get a bit:

$$
E_{\min } \equiv k_{\mathrm{B}} T \ln (2) \leq \frac{-Q}{R} \quad \text { (joules per bit) }
$$

## Minimum Energy Dissipated per Bit

- Minimum energy dissipated to get a bit:

$$
\left.E_{\min } \equiv k_{\mathrm{B}} T \ln (2) \leq \frac{-Q}{R} \quad \text { (joules per bit }\right)
$$

- $Q$ is heat going into the protein-DNA system


## Minimum Energy Dissipated per Bit

- Minimum energy dissipated to get a bit:

$$
\left.E_{\min } \equiv k_{\mathrm{B}} T \ln (2) \leq \frac{-Q}{R} \quad \text { (joules per bit }\right)
$$

- $Q$ is heat going into the protein-DNA system
- If $R>0$ then $Q<0$ heat goes OUT $=$ BINDING


## Minimum Energy Dissipated per Bit

- Minimum energy dissipated to get a bit:

$$
E_{\min } \equiv k_{\mathrm{B}} T \ln (2) \leq \frac{-Q}{R} \quad \text { (joules per bit) }
$$

- $Q$ is heat going into the protein-DNA system
- If $R>0$ then $Q<0$ heat goes OUT = BINDING
- If $R<0$ then $Q>0$ heat goes $\mathrm{IN}=$ UNBINDING


## Minimum Energy Dissipated per Bit

- Minimum energy dissipated to get a bit:

$$
E_{\min } \equiv k_{\mathrm{B}} T \ln (2) \leq \frac{-Q}{R} \quad \text { (joules per bit) }
$$

- $Q$ is heat going into the protein-DNA system
- If $R>0$ then $Q<0$ heat goes OUT $=$ BINDING
- If $R<0$ then $Q>0$ heat goes IN $=$ UNBINDING
- When $R<0$ one would have to force the recognizer to bind


## Minimum Energy Dissipated per Bit

- Minimum energy dissipated to get a bit:

$$
\left.E_{\min } \equiv k_{\mathrm{B}} T \ln (2) \leq \frac{-Q}{R} \quad \text { (joules per bit }\right)
$$

- $Q$ is heat going into the protein-DNA system
- If $R>0$ then $Q<0$ heat goes OUT $=$ BINDING
- If $R<0$ then $Q>0$ heat goes IN $=$ UNBINDING
- When $R<0$ one would have to force the recognizer to bind
- Sequences with $R i<0$ are not binding sites.


## Individual Information Density Curve



## How A Weight Matrix Works

Sequence matrix, $s(b, l, j)$ for sequence $j$

| base b | position 1 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | C | A | G | G | T | C | T | G | C | A |
|  | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| A | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| C | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| G | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
| T | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |

Individual information weight matrix, $R_{i w}(b, l)$

| base b | position 1 |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| A | +0.4 | +1.3 | -1.4 | -8.8 | -5.8 | +1.1 | +1.5 | -1.8 | -0.7 | +0.0 |
| C | +0.6 | -0.8 | -2.4 | -7.8 | -5.5 | -3.7 | -1.6 | -2.2 | -0.5 | -0.2 |
| G | -0.6 | -1.0 | +1.6 | $\boxed{+2.0}$ | -6.2 | +0.7 | -1.1 | +1.7 | -0.3 | +0.4 |
| T | -1.0 | -0.9 | -1.7 | -5.8 | +2.0 | -3.4 | -1.6 | -2.2 | +0.9 | -0.5 |

## How A Weight Matrix Works

Sequence matrix, $s(b, l, j)$ for sequence $j$


Individual information weight matrix, $R_{i w}(b, l)$

| base b | position 1 |  |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| A | +0.4 | +1.3 | -1.4 | -8.8 | -5.8 | +1.1 | +1.5 | -1.8 | -0.7 | +0.0 |
| C | +0.6 | -0.8 | -2.4 | -7.8 | -5.5 | -3.7 | -1.6 | -2.2 | -0.5 | -0.2 |
| G | -0.6 | -1.0 | +1.6 | -2.0 | -6.2 | +0.7 | -1.1 | +1.7 | -0.3 | +0.4 |
| T | -1.0 | -0.9 | -1.7 | -5.8 | $\boxed{+2.0}$ | -3.4 | -1.6 | -2.2 | +0.9 | -0.5 |



## Sequence Walker



## Sequence Walker example: rrnB P1



## Complex Sequence Walker Example

- $\sigma^{70}$ promoters have a -35 and $\mathrm{a}-10$


## Complex Sequence Walker Example

- $\sigma^{70}$ promoters have a -35 and a -10
- Using information theory we discovered that stress-response $\sigma^{38}$ promoters do not have a -35


## Complex Sequence Walker Example

- $\sigma^{70}$ promoters have a -35 and a -10
- Using information theory we discovered that stress-response $\sigma^{38}$ promoters do not have a -35
- Instead, they have a -10 and two UP elements


## Complex Sequence Walker Example

- $\sigma^{70}$ promoters have a -35 and a -10
- Using information theory we discovered that stress-response $\sigma^{38}$ promoters do not have a -35
- Instead, they have a -10 and two UP elements
- $\sigma^{38}$ promoter talA P1 is complex!



## Acknowledgements

- Mentors:
- Larry Gold (graduate school mentor)
- Andrej Ehrenfeucht (information theory)
- Collaborators:
- John Spouge (mathematics, proved individual info is unique)
- Mike Stephens (logos, splicing)
- Paul C. Anagnostopoulos (Java version of the evolution program, Evj)
- Ryan Shultzaberger (flexible walkers)
- $\sigma^{38}$ : Kevin Franco, Zhe Sun, Ding Jin, Yixiong Chen, Cedric Cagliero, Yuhong Zuo, Yan Ning Zhou, Mikhail Kashlev
- Useful discussions with
- Jeff Strathern
- Amar Klar
- Mark Lewandoski
- This research was supported by the Intramural Research Program of the NIH, National Cancer Institute,
 Center for Cancer Research.

Biological Information theory: the mathematics of biology



17 Bacteriophage T7 RNA polymerase binding sites



1 ttattaatacaactcactataaggagag
2 aaatcaatacgactcactatagagggac 3 cggttaatacgactcactataggagaac 4 gaagtaatacgactcagtatagggacaa 5 taattaattgaactcactaaagggagac
6 cgcttaatacgactcactaaaggagaca

$$
H=-\sum_{i=1}^{M} p_{i} \log _{2} p_{i}
$$

https://alum.mit.edu/www/toms/
version $=1.09$ of cutofftalk.tex 2021 Aug 27


[^0]:    ${ }^{1}$ T. D. Schneider, G. D. Stormo, L. Gold, and A. Ehrenfeucht. J. Mol. Biol., 188:415-431, 1986.
    ${ }^{2}$ R. M. Stephens and T. D. Schneider. J. Mol. Biol., 228:1124-1136, 1992.
    ${ }^{3}$ F. E. Penotti. J Mol Biol, 213:37-52, 1990.

