

Sequence Logos and the Helix of DNA

Thomas D. Schneider, Ph.D.

Frederick National Laboratory for Cancer Research Gene Regulation and Chromosome Biology Laboratory

Molecular Information Theory Group

Gallery of DNA Binding Sites

El Duomo, Florence, Italy

Gallery of DNA Binding Sites

DNA Bases - Minor Groove Rule

Arnott & Hukins, Biochem. and Biophys. Res. Comm., 1972, 47: 1504-1509

DNA Bases - Minor Groove Rule

Arnott & Hukins, Biochem. and Biophys. Res. Comm., 1972, 47: 1504-1509

DNA Bases - Minor Groove Rule

Arnott & Hukins, Biochem. and Biophys. Res. Comm., 1972, 47: 1504-1509

Major and Minor groove contacts explain peak locations but ...

Why do logos often smoothly follow the wave?

Major and Minor groove contacts explain peak locations but ...

DNA Access

Triangular area is empty \Rightarrow **OR** instead of **Sum**

Bacteriophage P1 RepA Sequence Logo

Stuart Austin and Ann Abeles found binding sites ... make a logo ...

Abeles, Reaves & Austin, J. Bacteriol. 1989 171:43-52

Bacteriophage P1 RepA Sequence Logo

Stuart Austin and Ann Abeles found binding sites ... make a logo

Abeles, Reaves & Austin, J. Bacteriol. 1989 171:43-52

RepA orientation data

G: Methylation interference•: hydroxyl radical footprint P. P. Papp, D. K. Chattoraj and T. D. Schneider, Information analysis of sequences that bind the replication, initiator RepA, J. Mol. Biol., 233, 219-230, 1993.

RepA orientation data

Orientation of proteins on DNA

Yeast Saccharomyces cerevisiae GAL4 Sequence Logo

Yeast Saccharomyces cerevisiae GAL4 Sequence Logo

top view

side view

Marmorstein et al. 1992, Nature 356:408-414

Yeast Saccharomyces cerevisiae GAL4 Sequence Logo

top view

side view

This does not explain the RepA anomaly!

Marmorstein et al. 1992, Nature 356:408-414

E. coli IHF Sequence Logo

E. coli IHF Sequence Logo

Rice et al. Cell, 1996, 87:1295-1306

E. coli IHF Sequence Logo

This does not explain the RepA anomaly!

Rice et al. Cell, 1996, 87:1295-1306

Hhal methyltransferase Base Flipping

Richard J. Roberts and X. Cheng, Annu. Rev. Biochem. 1998, 67:181-198

DNA Replication Protein Rts1

DNA Replication Protein Sequence Logos

Sequence logos for σ^{70} RNA transcription

Shultzaberger et al. Nucleic Acids Res., 2007, 35:771-788

Sequence logos for σ^{70} RNA transcription

Our prediction of base 4 flipping was confirmed! Feklistov & Darst, Cell, 2011, 147: 1257-1269

Shultzaberger et al. Nucleic Acids Res., 2007, 35:771-788

P1 RepA sequence logo and hairpin

Experiment: change base ± 7 on both strands.

Variant nucleotides at ± 7 of the P1 RepA binding site

The four natural base pairs are boxed.

Gel Mobility Shift Assay of ± 7 variant P1 RepA sites

A break appears in the ordered moities

Student's t-test of ± 7 variant P1 RepA site binding

Second hairpin

The break separates the moities into two classes

Variant nucleotides at ± 7 of the P1 RepA binding site

A Thymine at position +7 is important

RepA interacts with the base at position +7 for two reasons: removing Thymine +7 leads to a decrease in the binding affinity, while removing Adenine +7' does not.

C5 methyl group is not important

The C5 methyl group does not interact with RepA because removing or changing it only has a slight effect on the binding affinity.

O2 is not important

The O2 group is not important for RepA binding because 13.C/A (which has one) and 23.abasic/A (which does not) have similar binding energy.

O4 is not important

The O4 group is not important because 9.N4-Me-C/A does not have an O4 group as does 1.T/A, but the $\Delta\Delta G$ is low.

+7' amino group in minor groove is bad

A +7' amino group (purple) inhibits RepA binding.

+7 amino group in minor groove is worse

A +7 amino group (red) inhibits RepA binding more strongly than a +7' amino group.

A proton near N3 interacts with RepA

An important group that interacts with RepA is the N3 proton of Thymine or, in modified bases, a proton near the N3 atom. All bases that have a low Kd, below the distinct step, have a proton in this place.

• A. 1.T/A binds RepA stronger than 13.C/A.

- A. 1.T/A binds RepA stronger than 13.C/A.
- This low binding can be rescued by substituting the N4 proton with the methyl group in N4-Me-C.

- A. 1.T/A binds RepA stronger than 13.C/A.
- This low binding can be rescued by substituting the N4 proton with the methyl group in N4-Me-C.
- B. Two more structures that have a C-H proton near the N3 atom also bind RepA well.

- A. 1.T/A binds RepA stronger than 13.C/A.
- This low binding can be rescued by substituting the N4 proton with the methyl group in N4-Me-C.
- B. Two more structures that have a C-H proton near the N3 atom also bind RepA well.
- C. Outlines of the structures in A and B were aligned. Arrows point in the direction from which RepA would have to approach to form hydrogen bonds with the proton (green circles). Arrows with a red circle show contacts that are poor.

Conclusions

• Sequence logo sine waves indicate protein orientation on DNA

Conclusions

- Sequence logo sine waves indicate protein orientation on DNA
- Anomalies in the logo can reveal interesting binding modes

Conclusions

- Sequence logo sine waves indicate protein orientation on DNA
- Anomalies in the logo can reveal interesting binding modes
- Flipping a base out of DNA initiates DNA replication in bacteriophage P1 RepA and other DNA binding origin proteins

Acknowledgments

- Dhruba Chattoraj
- Peter Papp
- Rich Roberts
- Denise Rubens
- Paul Hengen
- Ilya Lyakhov

National Institutes of Health, National Cancer Institute

The Great Wave off Kanagawa by Katsushika Hokusai 1829-32

Version

version = 1.24 of helixtalk.tex 2012 Nov 07