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Like macroscopic machines, molecular-sized machines are limited by their material

components, their design, and their use of power. One of these limits is the maximum

number of states that a machine can choose from. The logarithm to the base 2 of the

number of states is defined to be the number of bits of information that the machine

could “gain” during its operation. The maximum possible information gain is a func-

tion of the energy that a molecular machine dissipates into the surrounding medium

(Py), the thermal noise energy which disturbs the machine (Ny) and the number of in-

dependently moving parts involved in the operation (dspace): Cy = dspace log2(
Py+Ny

Ny
) bits

per operation. This “machine capacity” is closely related to Shannon’s channel capac-

ity for communications systems.

An important theorem that Shannon proved for communication channels also ap-

plies to molecular machines. With regard to molecular machines, the theorem states

that if the amount of information which a machine gains is less than or equal to Cy,
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then the error rate (frequency of failure) can be made arbitrarily small by using a suf-

ficiently complex coding of the molecular machine’s operation. Thus, the capacity of

a molecular machine is sharply limited by the dissipation and the thermal noise, but

the machine failure rate can be reduced to whatever low level may be required for the

organism to survive.

If you want to understand life, don’t think about vibrant, throbbing gels and

oozes, think about information technology.

— Richard Dawkins [1]

1 Introduction and Overview

The most important theorem in Shannon’s communication theory guarantees that one can

transmit information with very low error rates [2, 3, 4, 5] (Appendix 20). The goal of this

paper is to show how Shannon’s theorem can be applied in molecular biology. With this

theorem in hand we can begin to understand why, under optimal conditions, the restriction

enzyme EcoRI cuts only at the DNA sequence 5′ GAATTC 3′ even though there are 4096

alternative sequences of the same length in random DNA [6, 7]. A general explanation of

this and many other feats of precision has eluded molecular biologists [8].

Unfortunately it is not a simple matter to translate Shannon’s communications model

into molecular biology. For example, his concepts of transmitter, channel, and signal do

not obviously correspond to anything that EcoRI does or has. Yet, a correspondence exists

between a receiver and this molecule since both choose particular states from among several

possible alternatives, both dissipate energy to ensure that the correct choice is taken, both

must undertake their task in the presence of thermal noise [9], and therefore both fail at a

finite rate (Appendix 21). By picking out a specific DNA sequence pattern, EcoRI acts like

a tiny “molecular machine” capable of making decisions. Once the “molecular machine”

concept has been defined, as best as is possible at present, we will begin to construct a

general theory of how EcoRI and other molecular machines perform their precise actions.

In doing this, we will derive a formula for the channel capacity of a molecular machine

(or, more correctly, the machine capacity, equation (38)). The derivation has several distinct

steps which parallel Shannon’s logic [4]. These steps are outlined below.

The lock-and-key analogy in biology draws a correspondence between the fitting of a

key in a lock and the stereospecific fit between bio-molecules [10, 11]. It accounts for many

specific interactions. We will extend this analogy to include the moving “pins” in a lock, and

then focus on each “pin” as if it were an independent particle undergoing Brownian motion.
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To understand these motions, we consider simple harmonic motion of a particle, first in

a vacuum and then in a thermal bath. The motion of many such particles serves as a model

of how the important parts of a molecular machine (“pins”) move.

Just as any two numbers define a point on a plane and any three numbers define a single

point in three-dimensional space, the set of numbers used to describe the configuration of

the machine define a point in a high dimensional “velocity configuration space”.

We then show that the set of all possible velocity configurations forms a sphere whose

radius equals the square root of the thermal noise energy. Similar spheres appear in statistical

mechanics as the Maxwell speed distribution of particles in a gas [12, 13, 14].

When a molecular machine is primed, it gains energy and the sphere expands. When the

molecular machine performs its specific action, it dissipates energy and the sphere shrinks

while the sphere center moves to a new location. Because the location of the sphere describes

the state of the molecular machine, the number of distinct actions that the machine could

do depends on how many of the smaller spheres could fit into the bigger sphere without

overlapping (Fig. 1). The logarithm of this number is the machine’s capacity. Because the ⇐Fig 1

geometrical approach we take is the same as Shannon’s approach [4], his theorem about

precision also applies to molecular machines. Hence, although molecular machines are tiny

and immersed in a thermal maelstrom, they are capable of taking precise actions.

The particular way that a molecular machine has evolved to pack the smaller spheres

together corresponds to the way code words are arranged relative to one another in com-

munications systems [15, 16]. This suggests that we should be able to gain insight into

how molecular machines work and how to design them by studying information and coding

theory.

2 Examples of Molecular Machines

In Jacob’s hierarchy of physical, chemical, biological and social objects [17], molecular

machines lie just inside the domain of biology, because they perform specific functions for

living systems. Molecular biologists continuously unveil lovely examples of molecular ma-

chines [18, 19, 20, 21, 22] and many people have pointed out the technological advantages

of building these devices ourselves [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]. If we were to

consider only one kind of molecular machine at a time, we would miss the general features

common to all molecular machines. Therefore, throughout this paper we will refer to the

following four molecular machines.

1. The genetic material deoxyribonucleic acid (DNA) can act like a simple molecular

machine. If DNA is sheared into a heterogeneous population of 400 base-pair long
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fragments and then heated (or denatured by other means), the double stranded structure

is “melted” into separate single strands. When the solution is slowly cooled, many of

the single strands bind to a complementary strand and reform the double helix (Fig. 2a)

[34]. ⇐Fig 2

Two characteristics make this reaction machine-like. First, a priming step (denatura-

tion) brings the molecules into a high energy state. Second, the molecules dissipate the

energy and anneal to one another in a reasonably precise way by using the complemen-

tarity between bases [35]. This “hybridization” reaction can be made so specific that it

is widely used as a technique in molecular biology [34, 36, 37]. Base complementarity

is also essential to all living things because it is the basis of nucleic-acid replication.

For this reason, the degree of base-pairing precision is important in evolution.

2. The restriction enzyme EcoRI is a protein which cuts duplex DNA between G and A

in the sequence 5′ GAATTC 3′ [38, 20, 39]. A single molecule of EcoRI performs

three machine-like operations [8]. First, it can bind non-specifically to a DNA double

helix. Second, after sliding along the DNA until it reaches GAATTC, it will bind

specifically to that pattern. Third, it cuts the DNA. In the absence of magnesium,

binding is still specific but cutting does not occur, so binding can be distinguished

from cutting experimentally. We will focus on the binding operation (Fig. 2b). As with

DNA, two characteristics make this reaction machine-like. First, there is a priming

operation in which the non-specific binding to DNA places EcoRI into a “high” energy

state relative to its energy when it is bound specifically. Second, the transition from

non-specific to specific binding dissipates this energy so that EcoRI is located precisely

on a GAATTC sequence. Without a dissipation associated with the specific binding,

EcoRI would quickly move away from its binding site. After this local dissipation, the

molecule is obliged to remain in place until it has cut the DNA, or a sufficiently large

thermal fluctuation kicks it off again.

In vivo cellular DNA is protected from EcoRI by the actions of another enzyme called

the modification methylase. This enzyme attaches a methyl group to the second A in

the sequence GAATTC, so that EcoRI can no longer cut the sequence. In contrast,

invading foreign DNAs are liable to be destroyed because they are unmethylated. The

methylase is precise, attaching the methyl only to GAATTC and not to any of the

sequences, such as CAATTC, that differ by only one base from GAATTC [40]. So in

vivo EcoRI is exposed to many hexamer sequences that are almost an EcoRI site, yet

under optimal conditions [6, 7, 41] it only cuts at GAATTC. How a single molecule of

EcoRI can achieve this extraordinary precision has not been understood [8, 42, 43].

3. The retina contains a protein called rhodopsin which detects single photons of light
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[44, ?]. Upon capturing a photon, rhodopsin becomes excited and then dissipates the

energy. Most of the time this converts rhodopsin into bathorhodopsin. A chemical

cascade then amplifies the bathorhodopsin “signal” 400,000 times, leading to a nerve

impulse. Because of this enhancement we can see single photons of light.

Why doesn’t rhodopsin merely “use the energy” to convert directly into bathorhodop-

sin? This transformation is not as easy as it first appears, since the high energy state

is a chemical transition state from which it is possible to go backwards to rhodop-

sin, rather than forwards to bathorhodopsin. Rhodopsin must make a “decision” about

what to do.

4. Little is known about the exact molecular mechanism of muscles [45, 24, 46, 47].

However, we know that the interaction of the proteins myosin and actin consumes the

energy molecule adenosine triphosphate (ATP). We may therefore imagine that the

hydrolysis of an ATP molecule primes the actomyosin complex into a high energy

state so that as the energy is dissipated a force is generated. As with rhodopsin, the

activated actomyosin complex must “choose” whether to go forwards or backwards.

3 Definition of Molecular Machines

In each example given in the previous section, a specific macromolecule is primed from a low

energy level—or ground state—into a high energy state. This is followed by a specific action

that dissipates the energy and performs a function that is evolutionarily advantageous to the

organism that synthesized the macromolecule. There are many other examples of molecular

machines that follow this pattern [18, 21]. In general we will not be interested in the priming

step, but rather with a precise measure of the specific action taken in exchange for the lost

energy. The measure we will use is the number of distinct states which the machine can

choose between. If the machine can select from two states, we say that it gains 1 bit of

information per operation. Likewise, the selection of one state from amongst 8 corresponds

to log2 8 = 3 bits per operation [5].

1. A molecular machine is a single macromolecule or macromolecular complex. In this

paper we discuss the microscopic nature of individual molecules, not the macroscopic

effects of large numbers of molecules. A molecular machine is not a macroscopic

chemical reaction [24]. This does not deny that we can model a solution containing

many molecules of EcoRI and DNA (without magnesium) by stating that the ratio of

specifically bound to non-specifically bound molecules is constant once the reaction

has reached equilibrium. This binding constant reflects the energetics of the individual
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reactions (∆G◦), but it does not reveal the binding mechanism because that is inde-

pendent of concentration. A single EcoRI molecule will cut a single DNA molecule

irrespective of the number of other DNA and EcoRI molecules in the solution.

Suppose, for example, that we allow a macroscopic solution of DNA and EcoRI (with-

out magnesium) to come to equilibrium at 37◦C. Since individual molecules continue

to bind and disassociate under these conditions, machine operations take place even

after macroscopic equilibrium has been reached [28]. Thus, the operation of a single

molecular machine cannot be treated as a macroscopic chemical reaction since that

“stops” when equilibrium is reached. For this reason, the molecular machine model

does not (and should not) refer to concentrations.

As McClare [24] pointed out, each molecular machine acts locally as an individual.

Likewise Arrhenius et al. [31] distinguish functions at the molecular level from bulk

material effects.

It is also worth noting that EcoRI alone is not a molecular machine. Only the combi-

nation of EcoRI and DNA is a molecular machine. Likewise, only the combination of

a car and a road (or other suitable surface) can do useful work.

2. A molecular machine performs a specific function for a living system. That is, if the

machine did not exist, the organism would be at a competitive disadvantage relative to

an organism that had the machine. Thus, a molecular machine must be important for

the evolutionary survival of an organism or it will be lost by atrophy. Shannon pointed

out that information theory is unable to deal with the meaning or value of a communi-

cation [2, 3]. In biology, however, we work with the closely related concepts of func-

tion and usefulness, factors which are ultimately defined by natural selection. This

part of the definition is important for accounting for the precision of molecular ma-

chines. Without a requirement for function, precision—or any other non-deleterious

property—does not matter, just as nobody cares whether or not a car on a junk heap

works. With a requirement for function, the very survival of the organism is it stake.

In practical terms, the requirement for precise function dictates that the states of the

molecular machine should be distinct and hence that the spheres represented by gum-

balls in Fig. 1 should avoid overlap.

This definition encompasses machines that operate outside cells, such as digestion

enzymes, and machines created entirely by humans [25, 30].

(Even a Rube Goldberg1 molecular machine’s function would be to amuse, to educate,

or to attempt to evade this definition.) Unlike simple chemicals like water, molecular

1 The English equivalent is Heath Robinson.
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machines are usually encoded by a genetic material and have the potential to evolve

by natural selection.

3. A molecular machine is usually primed by an energy source. These include not only

photons and ATP, but also thermal motions—as in the case of EcoRI separating from

a binding site. (DNA heat-denaturation is an artificial method that only appears in the

laboratory. Natural priming mechanisms usually do not use this macroscopic heating,

although they frequently use the “microscopic heating” provided by thermal fluctua-

tions.) Priming places the machine in an activated before state where it is ready to do

work. The before state corresponds to the large sphere that encases the gumballs in

Fig. 1.

The act of priming is usually, but not always, required for a molecular machine to

operate. For example, just after a new molecule of EcoRI has been synthesized, it is

ready to operate even though it never was in a low energy state before.

4. A molecular machine dissipates energy as it does something specific. This phase of the

machine’s cycle is called its operation. Once the operation is completed, the machine

is in an after state, which is represented by a single gumball in Fig. 1. Since the

machine is always subject to thermal noise, an after state consists of the set of all

possible motions that a single molecular machine could have at low energy. We will

call this set an ensemble. Likewise the before state consists of the set of all possible

motions that a single molecular machine could have at high energy, and this also forms

an ensemble.

5. A molecular machine “gains” information by selecting between two or more after

states. For example, EcoRI chooses one pattern out of 46 = 4096 possible hexa-

nucleotides, so it gains log2 4096 = 12 bits of information during its operation. Mea-

surements of the amounts of information gained by genetic recognizers have been

described in previous papers [?, 48, ?].

6. Molecular machines are isothermal engines, not heat engines [49]. They are obliged

to operate at a single temperature because they do not have any way to insulate them-

selves from the huge heat bath that they are embedded in. However, they can use a

priming energy to change their conformation to a more flexible one. This is essen-

tially a controlled form of denaturation. After priming, any excess energy is quickly

dissipated, leaving the molecule trapped in a flexible before state at the ambient tem-

perature. In this state the machine is like a “frustrated” physical system [50] randomly

searching through various conformations to find the correct one for the operation.
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When this is found, the formerly inaccessible (i.e. potential) energy is quickly dis-

sipated leaving the molecule once again at ambient temperature. This model allows

for the evolution of a molecular machine from primitive beginnings because the en-

ergy is captured by a denaturation, which is simple and easy to achieve. The model

does not require any form of molecular insulation or special vibrational modes which

would be difficult if not impossible to evolve.

This paper shows that the number of parts of a machine, the energy dissipated per op-

eration and the thermal energy in the machine determine the largest amount of information

a molecular machine can gain (equation (38)). This “channel capacity of a molecular ma-

chine” (or, more accurately, “machine capacity”) is measured in bits per operation, where

one bit is the amount of information necessary to choose cleanly between two distinct ma-

chine states. This paper demonstrates that although the machine capacity is sharply limited

by the amounts of dissipation and the thermal noise, the accuracy of the machine is not.

4 Lock-and-Key Model of a Molecular Machine

The state of a molecule is defined by the positions and motions of its atoms. To determine

the locations of the n atoms in a molecular machine, we first define a coordinate system.

Three spatial coordinates are needed to locate each atom, so we need 3n numbers. In many

cases we won’t care if the molecule is tumbling or moving through space, so we can affix the

coordinate system to the molecule’s center of mass and ignore the six numbers that describe

the coordinate system’s orientation and position in space. So for the positions we need no

more than:

dspace = 3n−6 (1)

coordinate numbers (Assumption 1).2 These coordinates are called “degrees of freedom”.

We also need dspace numbers to describe the velocities.

A molecular machine can only use a few of these degrees of freedom because many of

the atoms are required as structural components. In this context it is useful to extend the

lock-and-key analogy of biological interactions [10, 11]. A key opens a pin-tumbler lock by

moving a set of two-part pins to positions which allow the two parts to separate when the

key is turned [51, 52]. The wrong key will leave one or more pins in a position that blocks

the turning, and this will prevent the bolt from being released. Assumption 1 is that we only

need to account for the motions of clusters of atoms—the molecular machine’s “pins”—in

2 The assumptions are listed in section 17 after equation (38). Only after the capacity formula has been

constructed can we determine the consequences of relaxing each assumption. In most cases equation (38)

remains the upper bound on the machine capacity.
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order to describe its operation. Likewise, it is not necessary to keep track of the individual

atoms in a lock in order to understand how it works.

A second, closely related assumption is that the parts of a molecular machine move

independently (Assumption 2). Likewise the pins in a lock move independently. Yet because

of the design of a lock, the bolt can only move if the pins are all aligned correctly by the key.

Thus, although the individual pins are independent, they must “cooperate” for the lock to

open. If two pins were not independent, then it would be easier to pick the lock, and it would

not carry as much “protective” information because one pin could be set and the position of

the other would be determined. For example, two pins fused together would act as one pin.

Thus, in this analogy, dspace refers to the number of “pins” used by the molecular machine,

which is quite likely to be much smaller than the degrees of freedom:

dspace ≪ 3n−6. (2)

That is, the important degrees of freedom are not all of the degrees of freedom of the mole-

cule, but only those directly involved in the machine operation. We only need to account for

these to describe the machine’s operation. Estimates of n and dspace for rhodopsin will be

discussed later.

5 A Simple Harmonic Oscillator in a Vacuum

To demonstrate the method used in this paper, we first investigate the energetics of an os-

cillator which executes simple harmonic motion around its mean position without external

interferences:

h(t) = acos(ωt +φ), (3)

where h(t) is the position of the oscillator as a function of time t, a is the amplitude of

oscillation, ω is the frequency of vibration, and φ is the phase. This models the motion of a

single molecular machine “pin”. If we choose r =−aω, then the velocity is simply:

v(t) =
dh(t)

dt
= r sin(ωt +φ). (4)

The velocity has two independent Fourier components [53] with amplitudes x and y:

v(t) = xsin(ωt)+ ycos(ωt). (5)

From the trigonometric identity sin(A+B) = sinAcosB+ cosAsinB and equations (4) and

(5) we immediately find that x = r cosφ and y = r sinφ. Fig. 3 represents these quantities ⇐Fig 3
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graphically. On this graph, the point (x,y) completely defines the state of the oscillator at

any time t. It is important to keep in mind that x and y have units of velocity.

In this paper we use the Fourier components (x,y) rather than polar coordinates (r,φ)
because the Fourier description is symmetrical (x and y have the same units of velocity)

whereas polar coordinates are not (they have units of velocity and angle).

The energy of the oscillator can be found from the maximum velocity and the mass:

E = 1
2 mv2

max. (6)

[54]. The total energy is also the sum of the energies of the two independent sinusoidal

components in equation (5) [55], and since according to equation (4) vmax = r,

E = 1
2 mr2 = 1

2 mx2 + 1
2 my2, (7)

so

r2 = x2 + y2. (8)

This equation shows that in a vacuum, where the total energy E is constant, the radius

r is constant and the locus of the point (x,y) is a circle. That is, at a given energy the set

of all possible phase angles φ describes a circle of radius r =
√

2E
m

in a two dimensional

velocity space whose axes are the amplitudes of the two independent Fourier components of

the oscillator.

6 A Simple Harmonic Oscillator in a Thermal Bath

If a simple harmonic oscillator is immersed in a thermal bath, then impacts with neighboring

atoms change the phase and energy in an irregular way. Equipartition of energy between the

oscillator and the bath implies that each independent Fourier component of the velocity in

(5) has a Boltzmann distribution [14]:

f (x) =
1

σ
√

2π
e−Ex/2σ2

(9)

and

f (y) =
1

σ
√

2π
e−Ey/2σ2

, (10)

where

Ex = 1
2 mx2 and Ey = 1

2 my2. (11)
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The meaning of σ will be discussed below. We use the Boltzmann distribution to introduce

thermal noise into our Newtonian description of an oscillator. Substituting from (11) into (9)

and (10) gives:

f (x) =
1

σ
√

2π
e−mx2/4σ2

(12)

and

f (y) =
1

σ
√

2π
e−my2/4σ2

, (13)

so the velocities x and y have a normal or Gaussian distribution with a standard deviation

proportional to σ. Since the oscillator is surrounded by a huge thermal bath and impacts

from the bath are not predictable, the changes in motion of the oscillator are probabilistic.

Maxwell’s classical model for the velocity distribution of molecules in an ideal gas also uses

a Gaussian velocity distribution [12, 13, 14]. The normal distribution is graphed as the D = 1

curve in Fig. 4. ⇐Fig 4

What is the probability f (x,y) that the oscillator will have the velocity components x and

y? Since x and y are independent, we may write the probability density as

f (x,y) = f (x) f (y) =
1

σ22π
e−m(x2+y2)/4σ2

=
1

σ22π
e−mr2/4σ2

, (14)

where r =
√

x2 + y2 is the distance in velocity space from the origin to the point (x,y), as in

Fig. 3. The probability of finding that the oscillator has velocities in a small region dxdy is

f (x,y)dxdy. Since dxdy = rdrdφ [56] we can convert to polar coordinates:

f (x,y)dxdy =
1

σ22π
re−mr2/4σ2

drdφ. (15)

The total density at the radius r in an interval dr is therefore

f2(r)dr =
∫ 2π

0

1

σ22π
re−mr2/4σ2

drdφ =
1

σ2
re−mr2/4σ2

dr. (16)

The subscript “2” in “ f2(r)” indicates that two Gaussian distributions were used to obtain

the density distribution. This “Rayleigh” distribution is graphed as the D = 2 curve in Fig. 4

and shown as a smooth grey scale in Fig. 5. Notice that the distribution is radially symmetric ⇐Fig 5

and that the density in a thin ring around the origin approaches zero at the origin since r = 0

there.

We found in the previous section that when an oscillator is in a vacuum the total energy is

constant so that the radius r is constant and the set of all possible states with energy r2 is rep-

resented by a circle. In a heat bath the oscillator can exchange energy with the surrounding
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medium and the distribution is more spread out, according to the Rayleigh distribution. This

“open” description of a simple harmonic oscillator allows for energy and phase changes.

7 A Simple Molecular Machine in a Thermal Bath

We will assume that the energies in the independent “pins” of a molecular machine form a

Boltzmann distribution (Assumption 3) so each “pin” acts like a simple harmonic oscillator

in a thermal bath and

D = 2dspace (17)

numbers are required to describe the machine velocities because each “pin” has a phase and

an amplitude (i.e. two Fourier components x and y). At a given moment the energy of the jth

such “pin” component is determined by its velocity and the “pin’s” mass:

E j = 1
2 m jv

2
j . (18)

So that we will be able to easily compare “pins” with different masses we combine the

velocity with the square root of the mass to define a new variable:

y j =
√

E j. (19)

The assumption that energies of the “pins” have a Boltzmann distribution implies that

f (y j) = exp(−βE j)/z, (20)

where z is the “partition function”, z =
∫ ∞
−∞ exp(−βE j)dy j [14]. Dividing by z assures us

that the probabilities f (y j) sum to 1. β = (kBT )−1 where kB is Boltzmann’s constant and T

is the absolute temperature. Comparing (20) to (9), we find β = 1
2σ2 so σ2 = 1

2 kBT .

Substituting for the energy by using (19) we find that

f (y j) = exp(−βy j
2)/z. (21)

The form of this equation shows that the set of y j normalized velocity components have a

Gaussian distribution.

8 Y Space: A High Dimensional Model of Molecular Ma-

chines

By placing the magnitudes of the independent y j numbers at right angles to one another, we

form the coordinates of a single point in a space of D orthogonal dimensions. To paraphrase
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Shannon: “Essentially we have replaced a complex entity (the velocity configuration of a

macromolecule) in a simple environment (three dimensional space) by a simple entity (a

point) in a complex environment (D dimensional space)” [4, 57]. The space defined by all

possible values of y j is called Y space.

The reader may feel that such a high dimensional space is difficult to think about. For-

tunately, it is always possible to visualize the two or three dimensional cases. We have

already done this for the 2D oscillator. It is also worth keeping in mind that a point in a

D-dimensional space is defined by nothing more than a list of D numbers [58]. For example,

a lock with 10 pins is a 20 dimensional machine because 20 numbers are needed to define the

positions and velocities of the pins. Using a high dimensional space enormously simplifies

the problem of understanding molecular machines because in such a space both the before

and after states of the machine are represented by hollow spheres.

9 The Energetics and Distribution of Molecular Machines

in Y Space

Our next task is to determine the distribution of all possible machine configurations at a

given ambient temperature. From here on we will no longer be discussing just one molecular

velocity configuration, but rather the entire set of configurations that satisfy the distribution

given by (20). This collection is called a molecular machine “ensemble” or a “state” of the

machine. The probability density in Y space is the product (∏) of the individual independent

probabilities:

f (y1, . . . ,y j, . . . ,yD) =
D

∏
j=1

f (y j). (22)

Using equation (20) this becomes

f (y1, . . . ,y j, . . . ,yD) = exp(−β
D

∑
j=1

E j)/zD = exp(−βNy)/zD, (23)

where Ny is the total thermal noise energy in the “pins” of the molecular machine. If instead

of using (20), we combine (21) with (22) we obtain

f (y1, . . . ,y j, . . . ,yD) = exp(−β
D

∑
j=1

y j
2)/zD = exp(−βry

2)/zD, (24)

where we have used the Pythagorean theorem to collapse the D orthogonal y2
j values into a

single variable, ry, which is the radial distance from the origin to one of the possible points
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describing the motions of the machine. Comparing equation (23) to (24) shows that:

ry =
√

Ny. (25)

The Boltzmann distribution we have assumed for the “pins” implies that the parts of the

machine are at equilibrium with each other. At equilibrium the machine is not dissipating

energy and the thermal noise Ny is roughly the same for every possible configuration. So

ry is also roughly constant (Appendix 22). Since a constant distance does not imply any

particular direction in space, the set of possible motions of the machine form a sphere in Y

space.

Shannon called such spheres “sharply defined billiard balls” [4], but perhaps the ping-

pong ball is a more apt analogy because at high dimensions most of the density of a sphere

is close to the surface. This is demonstrated in Fig. 4, where one can see that at higher

dimensions the sphere density becomes tightly focused. The derivation of the distributions

for the higher dimensions is given in Appendix 22.

Brillouin [59, 57] gave the following simple proof of this curious property. Just as the

area of a circle is proportional to the radius squared, and the volume of a sphere is propor-

tional to the radius cubed, the volume of a D-dimensional sphere of radius r is proportional

to the radius raised to the dimension D:

V =
π

D
2

Γ
(

D
2 +1

)rD, (26)

where Γ is the gamma function [60, 4, 61]. Taking the derivative gives us

dV =
π

D
2

Γ
(

D
2 +1

)DrD−1dr (27)

and dividing (27) by (26) gives
dV

V
= D

dr

r
. (28)

This equation means that a fractional change in the radius (dr/r) is magnified by the dimen-

sion (D) to get the fractional change in the volume (dV/V ).

Even for a small molecule, D can be enormous. For example, Warshel [62] modeled

the light-activated “switch” in rhodopsin, 11-cis retinal, with 200 vibrational modes. To

emphasize the potential for high dimensions, we will find a minimum for the number of

dimensions needed to describe the motion of this vitamin A derivative. A minimum number

of atoms to model would be the 20-carbon backbone of retinal, so n = 20, dspace = 54 and

D = 108.
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Is this enough to create a sharply defined sphere? Suppose the radius of the sphere

describing retinal is 11 in Y space units. (It doesn’t matter what these units are, since they

cancel in Equation (28).) Then as the radius increases from 10 to 11 units, the volume

increases by dV
V

= 108 · 1
10 ≈ 11 fold. More than dV

V+dV
= 90% of the volume is already

concentrated in the outer 10% of the sphere.

Our estimate for n is conservative because we did not include the 28 hydrogen atoms in

retinal nor any part of the 39,048 Dalton opsin protein to which retinal is attached [63, 64],

nor the surrounding water and membrane (which undoubtedly have important effects on

molecular motions [65, 66]). There are 5511 atoms in rhodopsin, so for rhodopsin alone D

could be as high as 33,054. Not all of the atoms can be directly involved in the mechanism

(Assumption 1), but it is clearly possible for the number of dimensions used by the machine

to be large.

Exact calculation of the sphere density as a function of radius (Appendix 22) shows that

the sphere surface becomes sharply defined at higher dimensions (Fig. 4), so the entire set of

possible motions of even a small molecular machine are well depicted by a ping-pong ball.

10 Simulation of High Dimensional Spheres

We can generate the spheres both by numerical simulation and analytically. The two methods

are illustrated together in Fig. 6. For a numerical simulation, the motions of a molecular ⇐Fig 6

machine would be determined by the technique of molecular dynamics [67]. If the “pins”

have been identified—which probably requires understanding how the machine works—then

we could obtain a set of y j. When the machine parts are at equilibrium, these should have

independent Gaussian distributions (Assumption 2, Assumption 3). So instead of doing

molecular dynamics, we can use any set of real numbers having a Gaussian distribution.

These are easily created by adding together many pseudo-random numbers that have a flat

distribution [68]. The central limit theorem assures us that the resulting sum approaches a

Gaussian distribution [69]. A set of D such numbers forms the point in Y space.

To see what the distribution of these points looks like, we can map the sphere onto a

plane. The method is equivalent to moving cities from their particular latitudes and longi-

tudes on a globe to their longitudes at the equator. In Fig. 6 we have mapped 4-dimensional

Y space points onto the page by this method. From equation (24) the radial distance from

the origin to a point in Y space is given by:

ry =

√

√

√

√

D

∑
j=1

y j
2. (29)
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When σ = 1, the distribution has a maximum at rmax =
√

D−1 (Appendix 22), so the radius

was normalized by dividing by
√

D−1. The direction (angle) of each point was arbitrarily

taken from two of the y j coordinates.

To graph the corresponding smooth analytic function, we chose points on the page and

determined their distance from the origin to obtain ry. We then find the probability density

directly from the fD(r) function given by equation (48) of Appendix 22.

Fig. 7 shows the correspondence between the simulated points and the smooth analytic ⇐Fig 7

function. As the dimensionality increases, the spheres become sharper. The concentration

of points at a particular radius is a consequence of the enormously increasing volume as

the radius increases in higher dimensions. So, although the density is highest in the center

according to equation (24), the majority of points are found far from the center.

11 Thermal Noise in Y space

An oscillator in equilibrium with a thermal bath has an average energy of kBT joules [14].

Since a molecular machine has dspace “pins”, each of which is assumed to be equivalent to

an oscillator, the total energy is

Ny = kBT ×dspace (joules). (30)

This expression also gives the average energy of a molecule with dspace degrees of freedom

[13]. From equations (30) and (17) we see that

Ny = 1
2 kBT ×D (joules) (31)

so each of the y j variables has an average energy of 1
2 kBT . Combining equation (30) with

equation (25), we find

ry =
√

kBT dspace. (32)

Thus, thermal noise displaces the configuration of the machine away from the sphere center

by an amount related to the absolute temperature. For this reason we may regard the gumballs

of Fig. 1 as representing “thermal noise spheres”.

12 Location of Spheres in Y Space

The square of a distance in Y space is equal to the energy required to traverse that distance.

Suppose that there are two after states of the machine. (That is, two gumball spheres.) If the

distance from the first state to the second state is big enough, then the velocity configuration
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of the machine—which is represented by a point—would almost never be able to jump from

one sphere to the other and the two spheres would be separated by an energy “barrier”.

On the other hand, if the distance between the sphere centers were small, the two spheres

would be connected and the machine would often have enough thermal energy to make the

transition to the other state.

An analogy is useful to see how the states could become connected. Suppose that we

have a coin lying in a tub. There are two states, heads up and tails up. A certain fixed

minimum amount of energy is required to lift the edge of the coin in order to flip it over.

If we start to vibrate and shake the tub, then the probability that the coin will switch to the

other side increases. If we successively replace the coin with each of the 5 regular Platonic

solids—tetrahedron (4 sides), cube (6 sides), octahedron (8 sides), dodecahedron (12 sides),

and icosahedron (20 sides)—while keeping the mass the same, then switching between sides

(states) becomes increasingly easy. With more intense shaking, the states also become less

and less distinct.

The tub vibrations correspond to the temperature, which determines the radius of the

molecular machine’s spheres according to equation (32). Thus, at higher temperatures the

sharply defined spheres overlap and the states are no longer distinct. A molecular example

is the heat denaturation of double stranded DNA.

Specifying the location of the center of a sphere in Y space specifies the average configu-

ration of the molecule relative to other possible configurations. To be able to discuss several

spheres at once, we can represent the shape of the Y space ensemble with a vector notation:

~y =~s+ ~Ny. (33)

The center of the sphere is defined by a vector, ~s = (s1, . . . ,s j, . . . ,sD), while the in-

stantaneous radius of the current point on the sphere is defined by the vector ~Ny =

(y1, . . . ,y j, . . . ,yD). The magnitude of ~Ny is given by any of the relations (25), (29), (32)

or

|~Ny|=
√

Ny. (34)

The s j and y j variables play important roles in this paper, since they correspond to the

signal samples Shannon used in his theory. The set of variables that define the center of

each sphere, s j, plays the part of DC voltages, while the y j correspond to AC voltages due to

thermal noise (Appendix 21).

13 Molecular Machine Operations

So far we have modeled a molecular machine jiggling at equilibrium, and we found that it

can be represented by a sphere in Y space. Now let’s investigate what happens when the
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machine operates. Recall our four example machines. For DNA an operation means base-

pairing or hybridization, for a genetic recognizer like EcoRI it means locating a binding site,

for rhodopsin it means switching to bathorhodopsin, and for muscle it means contracting.

We say that “information is gained” when a machine changes from an indeterminate state to

a more determined state. Decreases in thermal motion corresponding to machine operations

have been observed in many molecular machines [18, 70]. In each case, a corresponding

energy decrease allows a specific action to be taken. Thus, rhodopsin dissipates the energy of

a photon to change states [62, 71, 72] and actomyosin dissipates the energy of a hydrolyzed

ATP molecule to generate motion [24, 46]. When DNA becomes double-stranded [34],

or when genetic recognizers stick to their binding sites [73, 74, 8], their range of motion

becomes restricted by a lower potential energy.

We only need to consider two energetic states of the machine [8]. Before an operation,

a machine has some specific amount of energy, while afterwards it has a smaller amount.

How the machine attains the activated before state (i.e., “priming”) is outside the scope of

our considerations, though we may note that a photon does this for rhodopsin [71], and

ATP hydrolysis does it for actomyosin [46]. Even large (but rare) thermal fluctuations can

cause this priming, since they can free repressors and other proteins like EcoRI from their

binding sites [73]. Likewise, DNA strands may be separated artificially by heat and chemi-

cal denaturants, or naturally by helicases using ATP, while bases incorporated into growing

nucleic-acid chains are already separate.

14 The before and after states in Y Space

Let us now consider the energetics of the two states of EcoRI. When the molecule is bound

to its sites in the after state, its “pins” have an energy determined by the thermal noise. Each

possible configuration of the machine is represented by a point in Y space, and the set of all

such points forms a sphere of radius

ra f ter =
√

Ny (35)

according to equation (25).

In the before state, EcoRI must have an internal energy higher than it does in the after

state, or it could not stick to the binding site in the after state. We will call the extra energy Py,

so that the total energy before is Py +Ny. Py is the energy difference between the states. We

will assume that the energy Py+Ny is equally partitioned between all the degrees of freedom

open to the molecule (Assumption 4). This is reasonable for EcoRI since in the before

state EcoRI wanders by Brownian motion along the DNA. Only when EcoRI encounters the

sequence GAATTC can the energy Py be dissipated (Assumption 5).
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In Y space, the configuration of the machine is represented as a noisy vector displacement

from the sphere center (equation (33)). If we add an energy Py to the machine, the effect in Y

space is to add a vector ~Py of magnitude
√

Py to the noise vector ~Ny. But in the high dimen-

sional Y space, most of this additional noisy energy will be directed at 90◦ to the original

noise energy because there are so many possible directions in the space. For example, if one

were in the center of a three dimensional globe looking north, 2/3 of the noise would be at

90◦ to the direction of sight. Likewise, if D = 100, then 99% of the noise would be at right

angles to any given direction.

Therefore, as shown in Fig. 8, the two vectors ~Py and ~Ny form a right triangle, whose ⇐Fig 8

hypotenuse is
√

Py +Ny according to the Pythagorean theorem. Since both ~Py and ~Ny may

point in any direction, the before state is represented by a sphere of radius

rbe f ore =
√

Py +Ny (36)

with an energy r2
be f ore = Py +Ny, which is the total energy that we defined initially. It is

difficult to see this geometry in three dimensions.

15 Machine Operations in Y Space

Once the machine dissipates energy, the vector ~Py becomes a specific direction relating the

before and after states. Referring to Fig. 8, we see that the before sphere has its center at

point O, while the after sphere has its center at point B. In this two-dimensional diagram,

the after sphere is represented by the line segment that extends from C to A. (The after state

is still spherical, but the two-dimensional diagram cannot show it. In three dimensions, the

after sphere would be represented by a circle at a particular latitude on a globe.) Because

of the high dimensionality most of the after sphere is “flattened” at 90◦ with respect to the

specific direction of ~Py, which is shown as ~OB in the figure.

Therefore, the machine operation corresponds to the motion of the sphere center from

O to B with a concomitant collapse of the radius, and loss of energy Py to the surrounding

medium.

Since~s represents the average configuration of the machine, a change in the sphere cen-

ter, ∆~s = ~Py, corresponds to a change in the average physical configuration of the molecular

machine, and different directions and magnitudes of ~Py in Y space correspond to different

state changes. Furthermore, the location of a small after noise sphere within the larger be-

fore sphere represents only one of several possible states of the machine since there can

be several non-intersecting after spheres [75, 76, 18]. Placement of the spheres according

to equation (33) is called the molecular machine’s coding scheme because the packing of
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spheres in space corresponds to the arrangement of code words in a communications system

[15]. The total dimensionality, D, determines how sharp-edged the spheres are, and so this

controls the intensity of the threshold effects if two spheres overlap [4]. Thus, the precision

of a molecular machine depends on its size. If the machine is big enough (n ≫ 1), then

the noise is predictable because D may become so large that spheres are sharp-edged. By

evolving to be big, even single molecules can have macroscopic stability. If the machine

contains enough independent components, then the spheres may also be placed accurately

in the space of D dimensions so that they just barely miss contacting each other. Thus, the

machine can have distinct after states. However, since the spheres are defined by a smooth

analytic function ( fD(r), equation (48)), they always overlap and there is always a small

probability that a machine in one after state can jump into another after state. The rate of

such transitions (or incorrect transitions from before to after) is the error rate.

Of course, simply increasing the number of atoms in order to raise the dimensionality

does not guarantee accurate placement of the spheres. However, the number of “pins” can be

increased during evolution of the machine, so the placement could be refined. This suggests,

for example, that many of the amino acids in a large protein could have subtle effects on the

sphere placement and coding [42]. These effects could be missed by conventional genetic

approaches that are based on the premise of finding “the” major recognition factor. For

example, recent X-ray crystal structure determination of a tRNA synthetase bound to its

cognate tRNA [77, 78, 79] suggests that the complete set of tRNA recognition factors is

spread over a large surface of both molecules [80] (as one would expect from this theory)

rather than concentrated in the anti-codon or other small regions.

We should emphasize that the configurations (points in Y space) that we have been con-

sidering are in either the before or the after states. We have not looked at configurations

during the operation. Since the energy changes during an operation, a set of such configu-

rations must connect the before to the after spheres. As we will see in the next section, it is

to our advantage to focus only on the simple spherical before and after states, for together

these characterize what the machine is able to do.

16 Derivation of the Machine Capacity

How many distinct after states can there be? Certainly the largest number of distinct states

that the machine could have after dissipation of its energy cannot be bigger than the max-

imum number, My, of small after spheres that can be packed into the volume of the large

before sphere, as suggested by Fig. 1 (Assumption 6, see also the second part of the defi-

nition of molecular machines) [15, 58]. We obtain this by dividing the volume of the larger
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sphere by the volume of a smaller sphere [4]:

My ≤
Vbe f ore

Va f ter

=

(√

Py +Ny

Ny

)2dspace

(37)

using equations (26), (36), (35), (17), and the fact that a sphere volume is proportional to the

radius raised to the dimension (D) that the sphere is embedded in. The “machine capacity”

is the maximum information, log2 My, that could be gained during the operation [2, 3, 5, 4]:

Cy = log2 My ≤ dspace log2

Py +Ny

Ny

(bits per operation). (38)

Aside from a constant due to the nature of the different situations, this equation is iden-

tical in form to Shannon’s famous channel capacity formula (equation (45) in Appendix 20).

In Appendix 21 we discuss how Shannon’s precision theorem applies to the case of molecu-

lar machines and in Appendix 23 we discuss a more general derivation.

17 Assumptions

Assumption 1 Only some of the atoms in a molecular machine are involved in an opera-

tion. For example, if the flip of a tyrosine ring in bovine pancreatic trypsin inhibitor has no

function [67] or effect on sphere sharpness or placement then dspace is effectively less than

3n−6. In this paper dspace is taken to refer only to the number of spatial degrees of freedom

involved in the operation. Even with the restriction of equation (2), dspace can still be large

in a typical macromolecule, so (38) still applies.

Most protein dynamics are well modeled with just the locations of the nuclei, and quan-

tum corrections are small at 300K [81, 82]. If quantum effects were used in a machine

operation, dspace would be given by the number of independent parameters that are required

to describe the system.

Two independent “pins” need not have the same importance to the organism. If we

use information content as a measure of “importance”, we can see that the “importance” of

various bases in a binding site is strongly dependent on the position in the site [?, 48, 83].

Likewise, one pin in a lock could have more “importance” than other pins if it used more

distinct levels than the others.

Assumption 2 The important parts of the molecular machine move independently. In the

lock-and-key analogy, this assumption is that the pins of the lock move independently of one

another. However, it is possible for one part of a molecular machine to affect the motions of
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its neighbors. In communications there are similar phenomena [4]. Regions of a television

picture are correlated to one another, and each frame is often similar to the next. Shannon

pointed out that this simply reduces the number of independent parameters. So correlations

between parts of the machine effectively reduce the dimensionality by confining the machine

to surfaces in Y space. If the dimensionality is reduced, then Cy remains the upper bound, as

can be seen from equations (37) and (38).

This assumption has a biological rational. It asserts that the components of a molecular

machine can become independent through natural selection. For example, where it is impor-

tant that two successive amino acids in the chain of a protein move independently to satisfy

the protein’s function, mutational insertions in the gene for the protein will confer a selective

advantage. Eventually a flexible segment may evolve that allows the amino acids to move

nearly independently.

The linear structure of binding sites on nucleic acids suggests that parts of the binding site

recognizers could operate independently in the same sense that lock pins are independent.

Three lines of evidence support this idea. First, it is possible to train a linear perceptron to

identify ribosome binding sites and splice junctions [?, 84, 85]. Second, it is possible to

predict the amount of translational initiation using a linear model of the 12 bases preceding

and including the first base of the initiation codon of ribosome binding sites [86, 87, ?].

There are similar data for the Cro, λ and lac repressor binding sites [88, ?]. Third, the

contribution of individual amino acids to the total association free energy between proteins

has been found to be additive in a number of cases [89, 90]. The success of these approaches

suggests that at least some parts of molecular machines exhibit independence and that further

experimental work may allow us to map the locations of the “pins”.

It is possible that a transformation of the descriptive variables is required to reveal inde-

pendence. For example, if the transformation involved in harmonic analysis provides a good

model for a particular molecular machine [54, 91, 92, 93, 94, 95, 82, 96] then the modes are

guaranteed to be independent, and the equipartition theorem [14] guarantees that the energy

is evenly distributed over all 3n− 6 modes [97]. A molecular machine need not use all of

these modes.

The independence assumption has a curious consequence. Since its components are

independent, the machine is modeled as an ideal gas in Y space and a machine operation is

represented by the collapse of this gas. The entropy decrease is simply the log of the ratio of

the volumes (equation (37)), as in classical thermodynamics [13]. The decrease in entropy

of the molecular machine is proportional to the information it gains.

Assumption 3 The energetics of molecular machine components (“pins”) are described by

a Boltzmann distribution [14, 91, 59]. This is equivalent to assuming that each component

is affected by band-limited white Gaussian noise [98, 99, 100, 4, 55, 70] or Brownian mo-
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tion [101] in which the velocity of a particle is the sum of many small impacts. Atomic

fluctuations in proteins are well characterized by Gaussian distributions [82].

Shannon considered the case of the channel capacity with an arbitrary type of noise [4].

He pointed out that white Gaussian noise is the worst possible noise, and that other kinds of

noise exist. As Shannon noted for communications systems, the ensemble states of molecular

machines are not spherical when the noise is not white Gaussian. This is equivalent to

changing the energy function of the “pins”. For example, suppose that the energies were

related to the maximum velocities x and y by

Ex ∝ |x|m and Ey ∝ |y|m (39)

instead of the form E ∝ x2, as in equation (6). Then the total energy would be proportional

to

|x|m + |y|m = |r|m. (40)

This may or may not be physically realizable, but we can use it to illustrate the possible

properties of non-Gaussian noise. The case of m = 2 produces a circle, as in Fig. 3. This

represents Gaussian noise. If m = 1 then the formula reduces to a line segment in the positive

quadrant. This is reflected around the origin by the absolute value functions, to produce a

“diamond” shape, as shown in Fig. 9. The figure also shows that there are a set of curves that ⇐Fig 9

lie between m = 1 and m = 2.

If m > 2 then the curve bulges outward and the limit as m → ∞ is a square! These shapes

exceed the area of a circle with the same total energy. Now consider how these objects could

be packed together. Circles could be packed into a hexagonal array. In contrast, the same

hexagonal packing of the rounded squares would cause them to overlap, so circles produce a

higher channel capacity. Since a molecular machine could obtain circles by evolving springs

that move by simple harmonic motion, the m > 2 case could be avoided. This is why white

Gaussian noise, where m = 2, is the worst possible noise. When m < 2 the area is less than

that of a circle. At m = 1, the shape becomes a diamond and below this the shape is concave

and has cusps. Since these spiky shapes can be packed more closely than circles, the capacity

can be reduced in the absence of Gaussian noise. Similar effects occur in higher dimensions

and with other force functions.

In general, if the effective “entropy power” of a noise N1 is less than the white Gaussian

noise Ny (N1 ≤ Ny) then
Py +Ny

Ny
≤ Py +Ny

N1
(41)

so the machine capacity is bounded by

Cy ≤ dspace log2

(

Py +Ny

N1

)

(42)
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and the upper bound exceeds the bound given by equation (38) [4]. We can see this geomet-

rically from the example given above. If the shape of the before state is spherical (i.e. the

radius is
√

Py +Ny), and the shape of the after state is spiky (i.e. the radius is effectively√
N1), then we obtain the upper bound of (42).

In this paper we have defined a classical physics benchmark against which we may ex-

amine real systems to see how well they do. Can a biological system use quantum effects

to circumvent white Gaussian noise? By experimentally investigating the capacity of real

molecular machines, it may be possible to answer this question.

Assumption 4 The before state is in equilibrium. The shape of the machine ensemble is

spherical in the after state because the machine has reached equilibrium with its surroundings

and the “pins” have a Boltzmann distribution (Assumption 3). In some cases the before

state is also in equilibrium because the machine is a “frustrated” physical system [50]. For

example, on a time scale far shorter than it takes to find a binding site, a molecule of EcoRI

should come to equilibrium with the surrounding solution. In contrast, if rhodopsin does not

have a “frustrated” state, then one vibrational mode of rhodopsin might absorb more energy

from a photon than the other modes, so that the ensemble would become an ellipsoid in Y

space. However, of all possible ellipsoids, a sphere contains the largest possible volume

given the constraint that the energy is constant. (For an ellipse,
(

x
a

)2
+
(

y
b

)2
= r2, the area,

πab, is maximized when a = b.) So if the energies are unequally distributed in the before

state, the volume will be smaller than that given by equations (36) and (26), My will be

decreased (equation (37)), and hence the information gain, R, will be below Cy (equation

(38)). Thus Cy remains the upper bound. We call this argument “The Ellipsoidal Defense”.

It is advantageous for a molecular machine, such as rhodopsin or actomyosin, to oper-

ate as close to its capacity as possible, because then it would gain as much information as

possible for a given energy dissipation. To operate near capacity, the machine must have, or

equilibrate to, a spherical before state. In other words, the entropy of the before state will

tend to be maximized by evolution, and the Ellipsoidal Defense is an argument that it is ad-

vantageous to the organism to allow the entropy of the before state to be maximized [?, 48].

Indeed, there is evidence for “complete thermal relaxation” in the before state of rhodopsin

[102, 71]. Complete thermal relaxation could easily be obtained by rhodopsin if it enters

a “frustrated” state when excited by a photon. It is possible that this relaxation improves

rhodopsin’s capacity to detect light.

Assumption 5 None of the power is wasted. If only part of Py is used by the machine to

make selections, while the rest is dissipated directly, then the rate that the machine gains

information, R (bits per operation), would be lower than the right hand side of equation (38),

and Cy would remain the upper bound.
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Assumption 6 The after spheres are perfectly packed and do not overlap. The after spheres

could overlap. This effectively reduces the number of distinct after states My, and lowers the

capacity according to equation (38). Thus Cy remains the upper bound.

Sphere overlaps represent transitions or isomerizations between semi-distinct states of

the machine [103, 82, 104]. To see this, consider two after spheres that are so close together

that they overlap. A point which is in the overlap region between the spheres could be

considered to be part of either sphere. Now recall that each point in Y space represents a

velocity configuration of the machine. A moment later the machine has moved, and this

corresponds to a point somewhere else on the sphere. If the machine starts out on one of the

spheres, and is in the overlap region next, it could easily end up on the other sphere. Since

the other sphere represents a different after state of the machine, the machine would have

two states but they would not be distinct because the machine would keep switching between

them. The rate that the machine switches states depends on the volume of the overlap region

relative to the size of the spheres.

These conformational substates may exist in either the before or the after machine states.

If the before state is broken into several connected conformational substates, one can find a

machine with a higher capacity by joining the substates, since this increases the volume of

the before state. In contrast, if an after state is broken into several conformational substates,

a better machine can be found by separating the substates, since this would increase the

number of distinct after states and so increase the capacity of the machine.

As an example, suppose that an RNA polymerase inserts the four bases at Ws = 200 op-

erations per second [105]. Since it performs R = log2 4 = 2 bits per operation, it operates at

WsR = 400 bits per second, which we will take to be its capacity. (See Appendix 23 for a

discussion of various forms of the capacity.) Now suppose that the temperature is raised, in-

creasing the thermal noise and swelling the after spheres so that they overlap (equation (32)).

Suppose that A and G become indistinguishable, that C becomes indistinguishable from U,

but that the operating rate is not increased significantly by the temperature increase. Then

the machine performs only 1 bit per operation at a rate of 200 bits per second. This shows

how blurring the distinction between after states decreases the machine’s rate of operation

below the machine capacity.

18 Toward a Coding Theory for Molecular Machines

If two after spheres are placed too close together, then they overlap. Since this leads to

semi-distinct substates that decrease the capacity (Assumption 6), it is advantageous for a

biological system to have a good way to pack the spheres together. With a good packing,

less energy needs to be dissipated per operation because the enclosing before sphere can be
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smaller. The placement of the after spheres is the coding scheme of the molecular machine,

because finding a good sphere packing method is the same problem as finding an optimal

communications code [15, 58, 106, 107, 108, 16]. Since every molecular machine has its

own code, there are many codes in molecular biology besides the genetic code.

In Shannon’s communication model (Appendix 20), long delay periods are required to

encode and decode the signal. The delay increases the dimensionality of the space (because

more numbers are used to describe the signal), so that the spheres become more sharply

defined. Sharp-edged high dimensional spheres overlap less than fuzzy low dimensional

ones, and this reduces the error rate. Therefore, a long coding period can be used to protect

against noise. Surprisingly, this allows a communication system to operate at the channel

capacity and yet have arbitrarily few errors [4]. A well known example of this kind of coding

is the parity check [108, 109].

A simple molecular machine can reach high dimensionality only by using spatial mech-

anisms since it is not possible for them to remember more than one item at a time (Appendix

23). In a time-encoding, the parts of a communications signal that are spread out in time

are combined to form a code to protect against errors [15, 58, 106]. In a space-encoding,

the information from a set of parallel channels is combined to form the code. The simplest

molecular machines are obliged to use space-encoding, so their parts must interact during the

operation. Indeed, cooperative interactions within a single molecule were recently proposed

to explain the high accuracy of the restriction enzyme EcoRI [20, 39, 8, 110, 42] and the spe-

cific binding of sugars by cell surface receptors [22], while the cooperative nature of DNA

and RNA hybridization [34] and oxygen binding by hemoglobin [75] are well known. The

frequent appearance of lock-and-key [10, 11] and allosteric mechanisms [111] in molecular

biology suggests that space-encoding is used by most if not all molecular machines. Instead

of paying for accuracy by using long time periods, molecular machines use large numbers of

interacting atoms.

Shannon’s channel capacity theorem states that as long as the rate of communication is

less than the channel capacity, the error rate may be made arbitrarily small. This theorem

also applies to molecular machines because the proof is based only on the geometry of the

spheres, and this is the same for both models (see Appendix 21). In terms of molecular

machines, the theorem says that:

By increasing the number of independently moving parts that can interact

cooperatively to make decisions, a molecular machine can reduce the error

frequency (rate of incorrect choices) to whatever arbitrarily low level is re-

quired for survival of the organism, even when the machine operates near its

capacity and dissipates small amounts of power.

The degree to which this happens during evolution depends, of course, on the requirements
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for function, the current design, and the evolutionary paths available to the machine. If a

good code is found (i.e. if there is a good way to have the molecular machine’s motions

in one state be distinct from the motions when it is in another state), then the molecular

machine can operate close to its machine capacity. In other words, the enormous complexity

of molecular machines allows them to be accurate, and coding theory should help us to

understand the mechanisms, accuracy, and evolution of molecular machines.

19 Summary

In this paper I have defined molecular machines and constructed a mathematical model for

them that fits many examples in modern molecular biology. The mathematical description

of molecular machine operations uses the methods of information theory, for which the hall-

mark and yardstick is the bit. According to this theory if a molecular machine is exposed to

white Gaussian noise, then it should not be possible for it to gain more information than that

given by the capacity formula, equation (38), although it may be able to approach this limit.

A theorem, originally proven by Shannon, shows that molecular machines can act

precisely despite the ubiquitous presence of thermal noise. This is not a quantum nor

chemical-bonding effect, but rather it arises from the degree of complexity that a molec-

ular machine can attain by evolving a molecular coding scheme. The channel capac-

ity should be a useful criterion for understanding and designing molecular machines

[36, 112, 113, 114, 10, 115, 116].
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20 Appendix 1: Introduction to Information Theory

Forty years ago Shannon published several famous papers that rigorously defined the concept

of information so that it could be used in designing communications systems [2, 3, 5]. To

allow information from several independent sources to be additive, he and earlier workers

chose a logarithmic measure. One “bit” is the amount of information required to distinguish

between two equally likely symbols, two bits are required to distinguish one symbol out of 4,

and 3 bits are required to distinguish one symbol out of 8. In general, if there are M equally

likely symbols to be distinguished, then one needs log2 M bits to pick out one of them.

Communication requires at least three components. A transmitter sends a signal over a

communications channel to a receiver that collects the signal for further use. The signal con-

sists of a series of symbols, which convey some average amount of information, R, measured

in bits per symbol [2]. We follow Shannon and other early workers [2, 120, 121, 122] and

take this to be the uncertainty of the receiver before receiving symbols minus the uncertainty

after reception:

R = Hbe f ore −Ha f ter (bits per symbol) (43)

where an uncertainty H is

H =−
M

∑
i=1

pi log2 pi (bits per symbol) (44)

and pi is the probability of each symbol i. When the symbols are equally likely, pi = 1/M

and equation (44) simplifies to the form Hequal = log2 M. Likewise, when one symbol is

certain, H = 0.

To find the maximum information from equation (43), the symbols appearing at the re-

ceiver must be equally likely, (so that Hbe f ore = log2 M) and every symbol must be exactly

identified (no uncertainty left after reception, Ha f ter = 0). Under these circumstances the

information is Rmaximum = log2 M. If there is any noise (Ha f ter 6= 0), or the symbols are not

equally likely (Hbe f ore <Hequal) then this simple formula must not be used and R<Rmaximum.

If the symbols are sent at a rate of Ws symbols per second, then the channel carries WsR

bits per second.

Shannon defined the “channel capacity” of a communications system and showed that it

is:

C =W log2

(

P

N
+1

)

(bits per second) (45)

where the bandwidth W is the range of frequencies used in the communication (in cycles per

second or Hertz), and P/N is the “signal-to-noise ratio” [4]. At the receiver a certain amount
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of signal power P (in joules per second) is required to distinguish the signals from each other

in the presence of thermal noise N (also in joules per second).

Shannon proved a remarkable theorem about the channel capacity. One part of the theo-

rem says that we cannot send information at a rate faster than the channel capacity. If we try

to do this (i.e., WsR > C), a quantity of noise will be received that limits the rate to C. The

other part of the theorem is surprising: if we transmit at any rate less than or equal to the

channel capacity (WsR ≤ C), then the transmission is possible with as low an error rate as

we may desire.

There is a price to be paid to get a low error rate: we must carefully encode the signal

before transmission and then carefully decode it afterward. Although both steps require a

delay, the overall transmission rate can approach C. Unfortunately the derivation of (45) and

the proof of the theorem do not tell us how to make codes which allow transmission at rates

close to C. Nevertheless, the formula is useful for understanding and designing communica-

tion systems, and methods have been found for creating “good” codes [106, 108, 107].

21 Appendix 2: Correspondences between Molecular Ma-

chines and Communication Channels

Although the molecular machine and communication channel models are not identical, we

may draw several analogies as discussed in the introduction. A molecular machine corre-

sponds to the receiver in Shannon’s theory [4] since both gain energy and dissipate it to

settle into a specific substate. For most molecular machines, such as the restriction enzymes

on DNA, there is no transmitter, nor is there a communication channel. Rather, the forma-

tion of correct matches between molecular surfaces usually serves the function of directing

the molecular machine to one or another substate. The phrase “signal-to-noise ratio” is not

meaningful in the context of simple molecular machines.

The reader may have noticed that for channel capacity, bits were defined as a selection

amongst possible symbols, whereas for machine capacity they were defined for selection

among states. von Neumann [119] pointed out that so long as we can correlate events (or

symbols) with states, these definitions are functionally identical.

Shannon’s theory took advantage of the fact that the square of the voltage across a resistor

is proportional to the power through the resistor. Likewise, the square of each y j is the energy

in the sine or cosine component of a “pin”. Rather than using these mechanical Fourier

“potentials”, Shannon used voltage potentials in his theory. The mathematical equivalences

between mechanical and electrical models are well known [54].
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The proof of the channel capacity theorem depends entirely on geometry and not on the

system being modeled. However, it is important to show that the geometry applies to molec-

ular machines. In Shannon’s Figure 5 [4], which is reproduced here as Fig. 10, the outer ⇐Fig 10

circle, with radius
√

Py +Ny, corresponds to the molecular machine’s spherical before state.

The “received signal” (point A) represents only one of the possible before configurations. A

spherical noise cloud around the “transmitted signal” (point B) of radius
√

Ny corresponds

to an after state. Having received signal point A, the receiver must select the transmitted

point B. This corresponds to a machine operation in which the sphere center moves from

point O to B, as the radius collapses. Since most of the dimensions are orthogonal to OB,

very little noise power extends in the direction OB, and the after sphere essentially remains

inside the before sphere. The shaded region L in Shannon’s figure contains centers of small

spheres that have the same after configuration at A. Shannon’s theorem 2 shows that the

probability of having a second after sphere centered in L—so that two after spheres overlap

at point A—can be driven as low as desired even if the locations of the after spheres are cho-

sen randomly. Thus the molecular machine can choose an after state with little probability

of error as long as the machine capacity is not exceeded. That this result is obtained from

most random choices of the coding suggests that the evolution of good codes may be easy.

In Shannon’s theory the capacity limit is approached by increasing t, while for the sim-

ple molecular machines described in this theory, dspace must increase. Molecular receivers,

discussed in Appendix 23, could increase either t or dspace.

22 Appendix 3: Derivation of the Sphere Density Function

In this appendix we determine the probability density distribution of a set of D independent

normally distributed random variables as a function of radial distance in the space defined

by those variables. By definition, the probability density along the jth axis in the space is:

f (y j) =
1

σ
√

2π
e
−y2

j/2σ2

. (46)

To determine the overall probability density function in the space, we integrate over spherical

shells. The probability of the machine being in a small shell of volume dV at radius r is

p(r) = f (y1, . . . ,y j, . . . ,yD)dV (47)

= ΠD
j=1 f (y j)dV

=
1

σD
√

2π
D

e−r2/2σ2

dV.
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If fD(r) is the probability density of the sphere as a function of radius, then the probability

of the machine being in a small interval of radius dr is also p(r) = fD(r)dr. Combining the

two equations for p(r) with equation (27) we obtain

fD(r) =
rD−1e−r2/2σ2

Γ
(

D
2

)

σD 2
D
2 −1

, (48)

which has a maximum at rmax = σ
√

D−1. If D is sufficiently high, then the fD(r) func-

tion can be approximated by a Gaussian distribution. Since any Gaussian with mean µ and

standard deviation σ′ has the property that f (µ+σ′)/ f (µ) = e−1/2, we may estimate the

fuzziness or thickness of the shell from the two intercepts with e−1/2 in Fig. 4: σ′− and

σ′+. This can also be calculated by noting that rD−1 = e(D−1) lnr, expanding the log by

ln(x+1) ≈ x− x2/2 [56] and setting rmax = 1. This leads to σ′ ≈ 1√
2(D−1)

when rmax = 1.

For the curves in Fig. 4, σ′− < σ′ < σ′+.

The fD(r) function is the probability density function of a χ2 distribution for the variable

x = r2/σ2 and D degrees of freedom [123, 117]. Fig. 7 is essentially a series of χ2 tests. The

curves for the lower dimensions are named after well known physicists: D = 1 is a Gaussian

distribution [12, 14]; D = 2 is a Rayleigh distribution [117]; and D = 3 is a Maxwellian or

Maxwell-Boltzmann speed distribution [12, 13, 14].

23 Appendix 4: General Theory of Molecular Machines

A receiver is a device whose state is determined by an external signal. In contrast, a simple

molecular machine such as EcoRI is not directed to its after state (binding sites) by an ex-

ternal command. Encoding or decoding a communications signal also requires a memory to

record the signal as it is being processed. Simple molecular machines don’t have the nec-

essary memory. For example, DNA in the groove of EcoRI acts like a key in a lock, with

the recognition process taking place in parallel over a surface of contact between EcoRI and

DNA [10, 11, 20]. Since EcoRI has no record of its previous bound and unbound states it

has no record of its history and cannot handle a time varying communications signal.

However, a time-encoded message could be received, remembered and processed by a

combination of simple molecular machines. Such a “molecular receiver” could decode a

message of the kind that Shannon’s theory is designed to handle. Since they could be made

insensitive to thermal noise by appropriate coding, molecular receivers are likely to play

an important role as the interface between humans and artificial molecular machines and

molecular computers. It is not known if any living organisms contain such devices, although
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the processes of translation, cell movement, mitosis, embryonic development and circadian

rhythms are candidates.

According to Fourier analysis, a time varying signal may be recorded as a series of dis-

crete samples. If t is the period of the recording and W is the highest frequency in the signal’s

spectrum, then the original signal may be reproduced exactly if at least

dtime = 2tW (49)

samples are recorded [4, 58, 53]. This powerful result is the basis of digital-sound recording

methods such as the compact disk [53].

If distinct states of a molecular receiver are determined by an external communications

signal, then a high dimensional space consisting of

D = dspacedtime (50)

dimensions can be used to describe the coding space of the machine. The machine could take

advantage of both the spatial and the time dimensions and would operate in a “space-time”

we will call Z space.

As in equation (31), we find that the average total energy for the entire molecular receiver

in Z space is

〈Ez〉 = ( 1
2 kBT )×D

= tdspace(WkBT ) (joules). (51)

using equations (49) and (50). Dividing both sides of (51) by t gives the total thermal noise

for the molecular receiver:

Nz ≡ 〈Ez〉
t

= dspace(WkBT ) (joules per second). (52)

The probability density is still given by equation (48). The sphere volume, which gives the

capacity, depends on the radius raised to the dimension that the sphere is embedded in, so

the maximum number of states is:

Mz ≤
Vbe f ore

Va f ter

=

(
√

Pz +Nz

Nz

)dspace2tW

. (53)

The definition of the molecular receiver capacity follows Shannon’s definition exactly [4]:

Cz =
log2(Mz)

t
= dspaceW log2

(

Pz +Nz

Nz

)

(bits per sec). (54)
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The relationship of this general equation to the capacity equations in the other two theo-

ries is straightforward. If we set dspace = 1 to indicate that there is only one spatial degree of

freedom, we obtain Shannon’s formula (equation (45)), and equation (52) becomes Nyquist’s

formula for thermal noise in a single wire [98, 118, 5]. If instead we set tW = 1 (to indi-

cate a complete lack of long-term memory) and use the time independent capacity definition

Cz = log2(Mz), we obtain the formula for a simple molecular machine, equation (38), and

the thermal energy formula (30) is obtained from (51).

The three theories are summarized in Table 1. ⇐Table

1The capacity of a molecular receiver is most easily understood as the capacity of dspace

parallel communications channels (compare (45) to (54)). The method of encoding in space

would then correspond to spreading the coding bits across the parallel channels rather than

spreading them out over time. From this it is clear that for a given error rate one can reduce

the required encoding and decoding time by increasing the parallelism.

References

[1] Dawkins, R. (1986). The Blind Watchmaker. W. W. Norton & Co., New York.

[2] Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Tech.

J. 27, 379–423, 623–656. http://tinyurl.com/Shannon1948.

[3] Shannon, C. E. & Weaver, W. (1949). The Mathematical Theory of Communication.

University of Illinois Press, Urbana.

[4] Shannon, C. E. (1949). Communication in the Presence of Noise. Proc. IRE, 37, 10–21.

[5] Pierce, J. R. (1980). An Introduction to Information Theory: Symbols, Signals and Noise.

2nd edition, Dover Publications, Inc., NY.

[6] Polisky, B., Greene, P., Garfin, D. E., McCarthy, B. J., Goodman, H. M. & Boyer, H. W.

(1975). Specificity of substrate recognition by the EcoRI restriction endonuclease. Proc.

Natl. Acad. Sci. USA, 72, 3310–3314.

[7] Woodhead, J. L., Bhave, N. & Malcolm, A. D. B. (1981). Cation dependence of restric-

tion endonuclease EcoRI activity. Eur. J. Biochem. 115, 293–296.

[8] Rosenberg, J. M., McClarin, J. A., Frederick, C. A., Wang, B. C., Boyer, H. W., Grable,

J. & Greene, P. (1987). The structure and function of EcoRI endonuclease. In Biological

Organization: Macromolecular Interactions at High Resolution, (Burnett, R. M. & Vogel,

H. J., eds), pp. 11–43, Academic Press, Inc., Orlando.

33

http://tinyurl.com/Shannon1948


[9] Johnson, H. A. (1987). Thermal noise and biological information. Quart. Rev. Biol. 62,

141–152.

[10] Rastetter, W. H. (1983). Enzyme engineering. Appl. Biochem. and Biotech. 8, 423–436.

[11] Gilbert, S. F. & Greenberg, J. P. (1984). Intellectual traditions in the life sciences. II.

Stereocomplementarity. Perspect. Biol. Med. 28, 18–34.

[12] Wannier, G. H. (1966). Statistical physics. John Wiley & Sons, Inc., New York.

[13] Castellan, G. W. (1971). Physical Chemistry. second edition, Addison-Wesley Pub-

lishing Company, Reading, Mass.

[14] Waldram, J. R. (1985). The Theory of Thermodynamics. Cambridge University Press,

Cambridge.

[15] Sloane, N. J. A. (1984). The packing of spheres. Sci. Am. 250 (1), 116–125.

[16] Cipra, B. (1990). Packing Your n-Dimensional Marbles. Science, 247, 1035.

[17] Jacob, F. (1977). Evolution and tinkering. Science, 196, 1161–1166.

[18] Porter, R., O’Connor, M. & Whelan, J., eds (1983). Mobility and function in proteins

and nucleic acids, Ciba Foundation Symposium 93. Pitman Books Ltd, London.

[19] Alberts, B. M. (1984). The DNA enzymology of protein machines. Cold Spring Harb.

Symp. Quant. Biol. XLIV, 1–12.

[20] McClarin, J. A., Frederick, C. A., Wang, B. C., Greene, P., Boyer, H. W., Grable, J. &

Rosenberg, J. M. (1986). Structure of the DNA-Eco RI endonuclease recognition complex
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Figure 1: A gumball machine demonstrates sphere packing.

The enclosing large sphere represents a molecular machine having high energy, while each

small sphere (gumball) represents the machine having low energy. There are many possible

low energy conformations. The machine or channel capacity is the logarithm of the number

of small spheres that can fit into the large sphere.
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Figure 2: Operations of Two Molecular Machines.

A. Single-stranded DNA will hybridize to become a double-stranded helix.

B. EcoRI will scan along a DNA molecule and then bind specifically to the sequence 5′

GAATTC 3′.
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Figure 3: Geometry for a simple harmonic oscillator.

A possible state of a harmonic oscillator is represented by point A. Its maximum velocity is

r and its phase is φ. This state may also be represented by the coordinate (x,y). Distances in

this figure have units of velocity.
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Figure 4: High Dimensional Sphere Density.

The sphere probability density as a function of radius, fD(r), is drawn for D =
1,2,4,8, . . . ,1024 dimensions (see Appendix 22). Except for the Gaussian curve (D = 1),

which passes through the point (0,1), the curves are “normalized” so that their peaks pass

through (1,1). At higher dimensions the curves approach the Gaussian distribution again and

peak sharply. The dashed line is at e−1/2, which intercepts “normalized” Gaussian distribu-

tions at one standard deviation from the mean.
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Figure 5: The Rayleigh Distribution

The continuous grey-tone distribution represents the analytic probability density, f2(r). Each

small open circle (©) represents the coordinates of two normally distributed values with

mean 0 and standard deviation 1. Each normally distributed value was the sum of 100

pseudo-random numbers with a flat distribution.
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Figure 6: Simulation of a fourth-dimensional sphere.

A four-dimensional Y space was projected onto the two-dimensional space represented by

the page. This is equivalent to a plane cross section through the space [4]. The continuous

grey-tone distribution represents the analytic probability density, fD(r) (equation (48) in

Appendix 22 and Fig. 4) for D = 4 and σ = 1. Each small open circle (©) represents

a numerical simulation produced from four normally distributed values with mean 0 and

standard deviation 1 according to equation (29). Each normally distributed value was the

sum of 100 pseudo-random numbers with a flat distribution.
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Figure 7: Increase of Sphere Sharpness with Increasing Dimensionality.

A series of sphere projections are shown for D = 4,8, . . . ,1024 dimensions. The first one

is the same as Fig. 6, but reduced in size. Only 10,000 Gaussian values were precalculated,

so the number of simulated points that could be calculated decreased as the dimensionality

increased.
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Figure 8: Geometry of Thermal Noise Spheres in High Dimensional Space.

The before sphere is represented by the outer circle, while the after sphere is represented by

the line segment CA. ~Ny is ~BA or ~BC, with |~Ny| =
√

Ny. ~Py is ~OB with |~Py| =
√

Py. See the

main text for further description. The figure was derived from Shannon [4].
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Figure 9: |x|m + |y|m = |r|m .

The equation is plotted for m = 0.5 to m = 5 by increments of 0.1. Integer values of m are

indicated by solid curves and other values by dotted curves.
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Figure 10: Correspondence Between Communication Theory and Molecular Machine Ge-

ometry.

The figure is the same as Figure 5 in [4] except that the distances are given as
√

Py,
√

Ny

and
√

Py +Ny rather than
√

2tWP,
√

2tWN and
√

2tW(P+N).
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Channel Molecular Machine Molecular Receiver

Coding Space Shannon Y Z

Degrees of Freedom dtime=2tW 2dspace≤2(3n−6) D=dspacedtime

Power P Py Pz

Noise N=W kBT Ny=dspacekBT Nz=dspaceWkBT

Power & Noise units J / sec J / op J / sec

Capacity C=W log2(P/N+1) Cy=dspace log2(Py/Ny+1) Cz=dspaceW log2(Pz/Nz+1)

Rate WsR R WsR

Capacity & Rate

units bits / sec bits / op bits / op - sec

Table 1: Information Capacity Theories

The units are J: joules; sec: seconds, op: operation.
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