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Abstract

Unlike the Carnot heat engine efficiency published in 1824, an isothermal efficiency derived
from thermodynamics and information theory can be applied to biological systems. The
original approach by Pierce and Cutler in 1959 to derive the isothermal efficiency equation
came from Shannon’s channel capacity of 1949 and from Felker’s 1952 determination of the
minimum energy dissipation needed to gain a bit. In 1991 and 2010 Schneider showed how
the isothermal efficiency equation can be applied to molecular machines and that this can
be used to explain why several molecular machines are 70% efficient. Surprisingly, some
macroscopic biological systems, such as whole ecosystems, are also 70% efficient but it is
hard to see how this could be explained by a thermodynamic and molecular theory. The
thesis of this paper is that the isothermal efficiency can be derived without using
thermodynamics by starting from a set of independent Gaussian distributions. This novel
derivation generalizes the isothermal efficiency equation for use at all levels of biology, from
molecules to ecosystems.

Keywords: Biology, Ecology, Gaussian, Hypersphere, Information theory, Isothermal
Efficiency

1 Introduction 1

“. . . anything found to be true of E. coli must also be true of Elephants.” – Jacques Monod 2

and François Jacob [1, 2]. 3

“. . . it is clear that the prime intellectual task of the future lies in constructing an 4

appropriate theoretical framework for biology.” – Sydney Brenner [3] 5
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Carnot derived a nonisothermal equation for the maximum efficiency of a heat engine, a 6

device that uses a heat source at temperature Thot and a heat sink at Tcold: 7

ηCarnot =
Thot − Tcold

Thot

(1)

[4, 5]. Because biological systems usually function at a single temperature, Thot = Tcold so 8

ηCarnot = 0, making the Carnot efficiency inappropriate to use to investigate most of 9

biology. This was recognized by Jaynes [6] who attempted to describe the efficiency of 10

muscle anyway by using ‘effective temperatures’. As has been confirmed by modern 11

experiments [7, 8], Jaynes knew that the maximum muscle efficiency is about 70% [9], and 12

since muscles work at approximately Tcold = 300K, he inferred that Thot = 1000K. 13

Fahrenheit 451, the famous book by Ray Bradbury [10], suggests that paper spontaneously 14

ignites at 506K [11,12], well below this Thot number. The result implies that muscles would 15

be hot enough to burst into flames when they function, which is absurd since the muscle 16

proteins actin and myosin denature well below boiling water at 100C = 373K [13, 14]. 17

Because of this problem, Jaynes pointed out that muscle is not a heat engine, yet he still 18

tried to use the Carnot equation. Likewise, modern work on ‘efficiency at maximum power’ 19

is also still based on Carnot and so is not relevant to most biological systems [15, 16]. 20

Fortunately, instead of attempting to shoehorn the biology to fit the Carnot efficiency, one 21

can derive an efficiency that applies at a single temperature (see equation (9)). Like the 22

nonisothermal Carnot efficiency, this isothermal efficiency is also derived from the second 23

law of thermodynamics [17–19]. 24

After Shannon published his famous paper on information theory in 1948 [20], he 25

followed in 1949 with a short but brilliant paper on the geometrical representation of 26

coding systems [21]. In this paper Shannon derived the maximum information that can be 27

sent over a communications channel, the channel capacity. Ten years later in 1959 Pierce 28

and Cutler built on these concepts to define an efficiency for satellite communications [22]. 29

Another 30 years later, in 1989, I found that the channel capacity equation can be 30

generalized to apply to molecular machines, molecules that dissipate energy to select 31

between two or more states, as defined in reference [17]. Surprisingly, the channel capacity 32

is closely related to the second law of thermodynamics for processes that function at one 33

temperature [18]. These ideas allowed me to derive the isothermal efficiency for molecular 34

machines and to explain why the DNA binding protein EcoRI and the molecular light 35

switch rhodopsin also operate near 70% efficiency [19]. 36

In this paper I show how to generalize the channel capacity and isothermal efficiency 37

equations even further so that they can be applied to a much wider range of biological 38

problems such as entire ecosystems. The basic idea is that one can construct these 39

equations starting from a set of independent Gaussian distributions instead of from 40

electrical signals [21] or thermodynamics [17–19]. The paper begins in Section 2 with a 41

review of the relevant concepts developed previously and then gives the new derivation in 42

Section 3. 43

The purpose of this paper is to generalize the efficiency mathematics for application 44

across biology. The key idea that many biological systems approach ln 2 ≈ 70% efficiency, 45

and its explanation, is already published [19] and has been used to explain why restriction 46
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enzymes frequently have binding sites that are six bases long: they likely use the 24 47

dimensional Leech lattice for coding [23]. Extensive data will be presented elsewhere, so 48

the 70% observation does not warrant further support here. Also, I intend this paper to be 49

readable by biologists and others interested in the topic so it briefly explains basic 50

information theory but does not give detailed mathematical proofs. The famous 51

mathematics expositor Paul R. Halmos said 52

The best notation is no notation; whenever it is possible to avoid the use of a 53

complicated alphabetic apparatus, avoid it. . . . fall back on symbolism only 54

when it is really necessary. 55

[24] (section 15). Those interested are invited to write a formal mathematical proof. 56

2 Channel Capacity and Efficiency in Biological 57

Systems 58

2.1 What is channel capacity? 59

For Shannon the derivations began with the assumption that a message will contain a 60

number of independent symbols, each symbol represented by a specific voltage. 61

Problematically, pristine voltage pulses become corrupted by thermal noise in the 62

communications channel such as a wire; this is the hiss that one may hear on AM radio. 63

Classical thermal noise, explained in 1928 by Nyquist [25] and Johnson [26], results from 64

summing many small independent random impacts, so according to the central limit 65

theorem of statistics it has a Gaussian distribution. In information theory this is known as 66

Additive White Gaussian Noise (AWGN). Shannon recognized that this is the worst 67

possible noise and he focused his efforts on overcoming it. He did so by an elegant trick. 68

When two independent Gaussian distributions are graphed orthogonally, they form a 69

circular (Rayleigh) distribution [17, 27]. Three independent Gaussian distributions combine 70

to form a sphere, and the probability density in spherical shells is the Maxwell gas 71

distribution. As one adds more Gaussian distributions, the result is still spherical in higher 72

dimensions, and results in a χ2 probability distribution. As the dimension (number of 73

independent Gaussians) increases, the χ2 distribution converges sharply to a thin spherical 74

shell [17, 28, 29]. 75

Shannon showed that any message can be represented as a series of voltage pulses and 76

since these are independently chosen by the sender, the entire message can be represented 77

as a point in a high dimensional ‘coding’ space. When this message is transmitted through 78

a communications channel, thermal noise is added to each pulse. So a set of zero voltage 79

pulses will be smeared out into a Gaussian distribution, as will the pulses of other initially 80

precise voltages of the message. Because each pulse and its noise is independent of the 81

other pulses, the receiver gets a point on the surface of a high dimensional sphere 82

surrounding the original message point. 83

By prior agreement with the transmitter, the receiver can know all the allowed locations 84

of transmitted messages in the high dimensional space, so when it gets a noise-distorted 85
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message it can determine the closest possible transmitted message. That is, given a point 86

on one of the received message spheres, the center of the sphere can be determined in a 87

process called ‘decoding’. By substituting the closest possible transmitted message point 88

for the received noisy point, the noise can be removed. The pure message is then given to 89

the destination. Modern communications systems, such as cell phones, use these concepts 90

to provide clear signals even though thermal noise is prevalent. This scheme only works if 91

the spheres do not significantly overlap since overlaps would make decoding ambiguous. 92

The probability of errors per message symbol can be driven as low as one may desire by 93

increasing the number of dimensions to sharpen the spheres. So Shannon discovered that it 94

is not necessary to increase the power to reduce the error rate [21]. 95

invisible text to make last C show up!

A A T T CG

Fig 1. Lock-key model for the EcoRI restriction enzyme.

A similar argument has been made for molecular machines [17]. In an electrical circuit, 96

voltage squared is proportional to the energy dissipated from a resistor per second. 97

Likewise, velocity squared is proportional to the energy of a moving body. So the 98

mechanical equivalent of Shannon’s voltage pulses is the velocity of sets of atoms that work 99

together in a molecule. Considering the analogy of a lock is useful for visualizing this idea. 100

A lock consists of a set of two-part pins that can move up and down (Fig. 1). The pins 101

have different lengths. When a key is inserted into the lock the pins are moved up and 102

down and if it is the right key, the breaks between the parts align at the ‘shear line’, 103

allowing the lock to open [30]. The pins in a lock can move independently, so they can 104

represent different dimensions. I proposed that specific parts of molecules act like pins in a 105

lock [17]. Gaussianly distributed thermal noise interacts with each pin of the molecule. So 106

the noise impacting on a molecule can be represented as a sphere in a high dimensional 107

space. The more ‘pins’ there are in the molecule, the more distinct that spherical state can 108

be from other spherical states [17, 21, 28, 29]. 109

So now we have two models, Shannon’s voltage space [21] and my molecular velocity 110

space [17]. In both cases, the total energy available (noise plus power) determines a large 111

sphere around the smaller message or molecular state spheres. Shannon realized that the 112

smaller thermal noise spheres could pack together inside the larger sphere (Fig. 2) and that 113

by dividing the volume of the larger sphere by the smaller sphere volume one could 114

determine the number of possible messages. By taking the logarithm of this number he 115
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Fig 2. A gumball machine represents sphere packing in a high dimensional space.
“Gumball machine” http://www.turbosquid.com/3d-models/

3d-model-gum-gumball-machine/648046 by Guido Vrola Design 2016 http://

vroladesign.it/ is licensed under CC BY 4.0, reproduced with permission.

derived the channel capacity: 116

C = W log2
P +N

N
(bits per second) (2)

where P is the signal power absorbed from the message and then dissipated by the receiver, 117

N is the noise interfering with the receiver, and W is the bandwidth (the range of 118

frequencies used in the communication). An equivalent formula was developed for 119

molecules, and in this case W is replaced by the number of independent ‘pins’, dspace [17]. 120

Shannon then showed that a communication system cannot send data at a rate higher 121

than the channel capacity, but if the rate is less than or (surprisingly) equal to the capacity, 122

the error may be made as small as desired [21]. The equivalent theorem for molecules 123

making state selections is that as long as the molecular state capacity is not exceeded, 124

molecules may make as few errors as necessary for survival of the organism they support. 125

(‘Desire’ is not an appropriate way to think about naturally occurring biological systems 126

since they evolve and are not designed [31] the way communications systems are.) 127

2.2 Measuring molecular efficiency 128

Many genetic controls are accomplished by proteins that bind to specific patterns in DNA. 129

The information in these patterns can be computed [32, 33] and displayed graphically using 130

sequence logos [34] (Fig. 3). 131

How is this information related to the binding energy ∆G? As we will see below, the 132

Second law of Thermodynamics provides a way to determine the number of bits that could 133

be gained for the binding energy dissipation [18]. So we can divide the information in a 134

DNA protein binding pattern by the information that could have been attained from the 135
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46 E. coli LexA binding sites, Rs = 20.97+/-0.19 bits/site 
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Fig 3. Sequence logo for LexA binding sites [34,35]. 23 experimentally demonstrated DNA
binding sites for the LexA protein and their complementary sequences from the bacterium
E. coli (Genbank accession NC 000913.3) were collected and aligned using Delila
instructions [36] that precisely define the site locations (see https://alum.mit.edu/www/

toms/lexa-inst.txt, and supporting information lexa-inst.txt). The sequence logo shows
stacks of letters corresponding to positions in the alignment. Within a stack, the height of
a letter is proportional to the frequency of the base at that position. The entire stack
height is the sequence conservation at that position, measured in bits [32]. I-beam error
bars show the likely variation caused by the small sample size [32]. The sum of the heights
of the logo stacks, the ‘area’ under the logo, is Rsequence = 20.97± 0.19 bits per site which
can be predicted from the size of the genome (G) and the number of sites (γ) using
Rfrequency = − log2(γ/G) bits per site [32, 33]. The peak of the sine wave indicates where
the protein faces the major groove of the DNA; intriguingly, this follows the sequence
conservation shown by the logo [35, 37].

energy dissipation. This is the molecular efficiency. Since the molecules work at one 136

temperature, it is also an isothermal efficiency. 137

Along with this empirical computation, one can develop a theoretical equation for the 138

efficiency (see equations (9) and (33)). This was first derived by Pierce and Cutler to 139

determine the efficiency of satellite communications [22]. Apparently the isothermal 140

efficiency equation was not used after Pierce and Cutler until it was applied by me to DNA 141

binding proteins [19]. A clear case is EcoRI, a defense enzyme of the bacterium Escherichia 142

coli. After a virus injects its DNA into a bacterium, the bacterial EcoRI molecules move 143

along the DNA by Brownian motion and then bind to the 6 base-pair long viral DNA 144

sequence 5′ G↓AATTC 3′ and cut both strands of the double helical DNA between the G 145

and the A. This breaks the viral DNA into pieces and the virus is defeated [38]. The host 146

DNA is not cleaved because it is methylated by another enzyme at the second A of the 147

GAATTC sequence. 148

Before we can begin the calculation of EcoRI efficiency, it is necessary to take a small 149

detour into basic information theory [39, 40]. A coin can sit stably on a table in only two 150

possible states of heads or tails. This means that a coin can store log2 2 = 1 bit of 151

information. Further extending this argument to choose one out of the four DNA bases 152
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(represented by the letters, A, C, G and T) one can first arrange them on the corners of a 153

square. One can think of a bit as a knife slice that splits the set of possibilities in half. 154

Two knife slices will distinguish the four bases as either being on top/bottom or left/right. 155

This requires two independent choices or log2 4 = 2 bits of information per base. Base 156

independence is an assumption, but it is reasonably well supported for DNA binding 157

proteins [41]. For this example we also assume equiprobable DNA bases [32]. 158

There are 6 successive bases in the EcoRI binding site, so the total information—which 159

Shannon required to be additive for independent components [20]—is 160

2 (bits per base)× 6 (bases per site) = 12 (bits per site) [32]. 161

EcoRI selects one state out of 46 = 212 = 4096 possible DNA sequences that are 6 bases 162

long. In order to stick and remain in place, EcoRI dissipates energy when it binds to the 163

DNA. The question of the relationship between energy and information, exemplified by the 164

action of EcoRI, has been a fundamental question in biology ever since Maxwell invented 165

his demon [42]. 166

In the case of a coin one may start at some height above a table, so it has some 167

potential energy relative to the table surface. There will also be some kinetic energy in the 168

coin if it is moving. Our goal is to set the coin on the table in a specific state—this is not a 169

random flip. When we place the coin either heads or tails on the table, both the potential 170

and the kinetic energy must be dissipated to the surroundings. If these were not dissipated, 171

the coin would either not be resting on the table (potential) or it would bounce (kinetic). 172

If one starts a motionless coin 10 cm above the table, some potential energy must be 173

dissipated to store one bit. If one were to start 20 cm above the table, then twice as much 174

energy would have to be dissipated to still gain only one bit. Therefore the relationship 175

between information and energy is an inequality. So, what is the minimum energy needed 176

to store a bit? 177

To answer this important question we can use the Clausius inequality version of the 178

Second Law of Thermodynamics: 179

dS ≥ q/T (3)

where dS is the change of entropy of a system and q is the heat put into the system at 180

absolute temperature T [43]. By setting T to a constant, to represent isothermal biological 181

conditions, I derived the minimum energy that must be dissipated from a system to gain 182

one bit in the system: 183

Emin = kBT ln 2 (joules per bit) (4)

where kB is Boltzmann’s constant and ln 2 sets the units to ‘per bit’ [18]. Historically, this 184

same equation was first derived from the channel capacity by Felker in 1952 [18, 22, 44–47], 185

not Landauer in 1961 [48] as is often assumed. 186

When EcoRI binds to DNA, it dissipates energy in going from anywhere on the DNA to 187

its binding sites. The equilibrium constant has been measured as 188

Kspec = (1.59± 0.14)× 105 [49]. The free energy, which gives the maximum amount of 189

work that can be done by a chemical reaction, is 190

∆G◦

spec = −kBT lnKspec (joules per binding). (5)
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Combining this equation with equation (4) gives the informational equivalent of the energy 191

Renergy ≡ −∆G◦

spec/Emin (6)

= log2Kspec (bits per binding) (7)

and we learn by inserting Kspec that for this energy dissipation, EcoRI could have made 192

17.3± 0.1 bits of decision. 193

But, as we saw earlier, the pattern in the DNA is only Rsequence = 12 bits per binding, so 194

EcoRI has an efficiency of only 195

nr =
Rsequence

Renergy

(8)

= 12/(17.3± 0.1)

= 69.4± 0.4%.

A similar calculation made for LexA using the area under the sequence logo (Fig. 3) and 196

measured binding constants [50] gives an isothermal efficiency of 0.73± 0.02. 197

After muscle (0.68± 0.09 [7, 8]), EcoRI (0.694± 0.004) and LexA (0.73± 0.02), another 198

molecular example suggests that having ∼70% efficiency represents a general rule. The 199

protein molecule rhodopsin is found in the retina of the eye. Buried in the center of 200

rhodopsin is the light sensitive pigment retinal, a form of vitamin A related to the 201

β-carotene that gives some carrots an orange color. When a photon hits the retina and is 202

absorbed by retinal, rhodopsin starts wiggling and then it can switch to a new state to 203

record the arrival and absorption of the light [51, 52]. However, it switches only 66± 3% of 204

the time [19]. 205

A 70% efficiency can be explained using the isothermal efficiency equation derived from 206

the channel capacity, equation (2): 207

nt =
ln
(

P
N
+ 1

)

P
N

(9)

where P is the power dissipated (energy per binding for example), N is the thermal noise 208

that disrupts the molecule during binding and the subscript t represents the theoretical 209

bound as opposed to a measured ‘real’ efficiency nr (Fig. 4) [19, 53]. The channel capacity 210

theorem says that no system can exceed this boundary, 211

nr ≤ nt. (10)

The efficiency of a biological system will tend to a maximum. For EcoRI, excess energetic 212

contacts that don’t specify information will be mutated away so according to equation (8) 213

the efficiency will rise. Likewise, it is imperative for animals that have vision to capture the 214

maximum number of photons to survive. Yet no more than 70% of the photons actually 215

absorbed by rhodopsin are detected. The reason for an upper bound of 70% is not obvious. 216

However, when the P/N ratio is 1, the efficiency according to equation (9) is ln 2 ≈ 0.69. 217

Because equation (9) is a monotonically decreasing upper bound, the observation of a 70% 218
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ln(P/N+1)
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P
N

ln 2

Fig 4. The isothermal efficiency curve (equation (9)) derived either from information
theory and thermodynamics [19, 22, 53] or Gaussian distributions (this paper). Shannon’s
channel capacity theorem [21] ensures that no system can lie above the curve.

efficiency maximum could be explained instead as a lower bound on P/N . It turns out that 219

when P = N , the spherical states of the molecules are just touching [19, 53], as shown in 220

Fig. 2. The implication is that the states of the molecule are distinct, as is well known for 221

EcoRI and rhodopsin. 222

By reversing the order of this argument we can see the biological significance of the 70% 223

results. We start from the fundamental requirement that EcoRI sites be distinct from other 224

sites in the genome and for rhodopsin’s dark versus light states to be distinct. The 225

methylase enzyme that is paired with EcoRI only protects the DNA sequence GAATTC by 226

methylation, so by evolving to satisfy the separation of states requirement EcoRI will not 227

chew up the rest of the unprotected genome. For rhodopsin the state separation 228

requirement prevents one from continuously seeing flashes of light, which would make one 229

blind in the extreme. The state separation requirement implies that the state spheres not 230

intersect and so P/N > 1 and therefore nt < ln 2 ≈ 0.69 by equation (9). The observed 70% 231

efficiency comes from the requirement that biological states be distinct in the presence of 232

unavoidable high dimensional Gaussian noise that makes those states be spherical. 233

3 Developing a new derivation of the isothermal 234

efficiency 235

3.1 70% Efficiency also appears in ecology 236

Ecologists are concerned with the distribution of species in an ecosystem. If each species 237

had the same number of individuals then the distribution would be flat and this is called 238

100% ‘even’. Evenness could be calculated many ways and ecologists disagree on which of 239

at least 14 proposed measures methods is best [54]. However, Evelyn C. Pielou proposed 240

one such measure based on information theory [55]. Her measure uses Shannon’s 241
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uncertainty [20]: 242

H = −
M
∑

i=1

Pi log2 Pi (11)

where Pi is the probability of the ith species out of M species in an ecosystem. The highest 243

possible value of H , 244

Hmax = log2M (12)

occurs when all the probabilities are equal. This would be the most ‘even’ distribution of 245

species, so Pielou proposed to measure ecological ‘evenness’ as: 246

J = H/Hmax (13)

which gives evennesses between 0 and 1. The advantage of this evenness measure over all 247

the others is that it is related to Shannon’s channel capacity theorem and the isothermal 248

efficiency. In her 1966 paper, figure 3 shows J peaking near 70% for ground vegetation. 249

Can the thermodynamic explanation that applies to molecular machines be generalized so 250

that it also applies to an ecosystem? 251

3.2 High dimensionality and noise lead to hyperspheres 252

The goal of this paper is to generalize the theory to accommodate molecular to macroscopic 253

observations of 70% efficiency or evenness. We begin by noting that biological systems in 254

general are described by many independent numbers. EcoRI, rhodopsin, actin and myosin 255

are large molecules with potentially many ‘pins’, and a particular species of plant lives in 256

an ecosystem niche with many conditions required for survival such as amount of sunlight, 257

water and soil pH. That is, at all levels biological systems are high dimensional. 258

There is noise impacting each of the dimensions of a biological system. The noise comes 259

in collisional impulses at the molecular level and fluctuating wind, rain and so on at the 260

ecosystem level. The combination of many small impulses tends to a Gaussian distribution 261

according to the central limit theorem. An example is the approximately Gaussian 262

distribution of heights at which different warbler species nest in conifer trees [56]. 263

So we have the two factors needed to generate spheres in a high dimensional coding 264

space: high dimensionality and independent Gaussian distributions. That is, biological 265

states can, in general, be represented as hyperspheres. They become more sharply defined 266

as the dimension increases, with the density concentrating on the surface [17], and this 267

allows for the states to be more distinct. Biological systems can attain distinct states by 268

increasing the dimensionality, so they will likely evolve high dimensional states. In the 269

world of communications, if some variables are correlated, one can choose those that are 270

independent [21]. In a biological system it is possible for the organism to evolve many 271

independent components (like pins in a lock), and it is to the advantage of the organism to 272

do so because that leads to sharply defined high dimensional states. 273

We can represent the noise along one dimension yi by a Gaussian probability 274

distribution: 275

p(yi) =
1

σ
√
2π

e−(yi−µi)2/2σ2

(14)
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where σ is the standard deviation and µi is the mean (center) of the distribution [21]. In D 276

dimensions, i = 1, . . . , D, we can integrate in spherical shells and the density is found to be 277

fD(r) =
rD−1e−r2/2σ2

Γ
(

D
2

)

σD 2
D

2
−1

(15)

which is a χ2 distribution in x = r2/σ2 with D degrees of freedom (See Appendix 3 of [17]). 278

As the dimensionality increases, this distribution becomes more sharply peaked so we can 279

model the states as hyperspheres with a radius of σ
√
D − 1 [17]. 280

People often speak of independent and identically distributed random variables (IID). 281

This is too restrictive for the general biological problem of biological states. Each 282

independent Gaussian distribution can be normalized to have the same standard deviation, 283

but with different means, so they are not identical. This creates normalized Gaussian 284

spheres in the coding space. For example, the mean and standard deviation for two 285

different distributions that affect the ecological niche of a bacterium in the digestive system 286

can have unique units such as Mg concentration and temperature. By dividing both the 287

mean and standard deviation of each distribution, i, by its corresponding standard 288

deviation, one converts a normal N(µi, σi) distribution (with mean µi and standard 289

deviation σi), to a N(µi/σi, 1) distribution. In high dimensions the collection of all such 290

independent distributions are then spheres with radius 1 at different locations in the space. 291

In more formal terms, a biostate can be represented as a vector of real valued numbers 292

X1, ..., XD and the ‘noise’ as a normalized Gaussian vector Z1, ..., ZD, such that the 293

observed state is Yi = Xi + Zi (for i = 1, ..., D), which is a sphere of radius 1. As the 294

dimensionality D increases, the probability density concentrates on the surface in a thin 295

shell by equation (15). 296

The dimensionality and packing arrangement of these spheres—the coding (Fig. 2)—is 297

an open problem in biology. For example, we have recently shown how to determine the 298

dimensionality of DNA binding proteins. Surprisingly EcoRI and other 6-base cutting 299

restriction enzymes function in 24 dimensional space and probably use the famous Leech 300

lattice for their sphere packing [23]. 301

3.3 Define Noise N in terms of the standard deviation of a 302

Gaussian, σ 303

In Shannon’s communications model, the total noise N is determined from the sum of the 304

noise in each dimension. In a thermodynamic system, the dimensions are the independent 305

degrees of freedom and according to the equipartition theorem of thermodynamics each 306

carries an average energy of 1
2
kBT , so the total noise energy is: 307

N =
1

2
kBTD (16)

where D is the dimensionality, T is the absolute temperature and kB is Boltzmann’s 308

constant [6, 17]. In an electrical system, the voltage squared is proportional to the power 309
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(energy per time) and in a mechanical biological system, the velocity squared is 310

proportional to the energy per molecular machine operation [17]. Starting from the 311

combined Gaussian density equation (15), The radius of a Gaussian noise hypersphere is: 312

r = σ
√
D − 1 =

√
N (17)

(see equation 25 of [17]). 313

Again, note that if different dimensions have different units, then each dimension can be 314

normalized by dividing by the standard deviation. That is, scaling along the different 315

dimensions is irrelevant because one can normalize to make the spheres have the same radii. 316

Also, if variables are correlated then, following Shannon, select the dimensions that are 317

independent [21], as in principal component analysis. 318

So if we start from the premise that a biological system has many dimensions 319

(independently varying components) and each dimension is disturbed by Gaussian noise, 320

then the state of the biological system can be represented as a sharply defined sphere in a 321

high dimensional space D with a radius
√
N . 322

3.4 Define power P as the energy dissipation from a system in 323

the relevant biological time interval 324

A biological system can have many states, each represented by a hypersphere. The total 325

number of accessible states is limited by the energy dissipation or power P . For EcoRI this 326

is the so-called ‘binding energy’ and for rhodopsin this is the energy fleetingly remaining in 327

the protein structure after that structure has been partially denatured by the photon. For 328

molecular machines the time interval is the molecular machine operation, as previously 329

discussed [17]. 330

When this power P is dissipated, it allows the system to move in the coding space from 331

one hypersphere state to another. If the hyperspheres do not intersect, then the distance 332

moved in the space
√
P must at least exceed the radius of a hypersphere, so

√
P >

√
N 333

and so P/N > 1. (See [19] for more detailed proofs.) If we could apply the 334

thermodynamically-derived equation (9), then the efficiency would be near ln 2 ≈ 70%. So 335

how do we derive the efficiency equation without depending on thermodynamics? 336

3.5 Generalized isothermal efficiency 337

A vector for the power P can point in any direction in the coding space. So the power 338

inscribes a sphere of radius P in the hyperspace into which must fit the centers of all of the 339

noise hypersphere states that are accessible given that power. Some noise hyperspheres will 340

peek outside the power sphere, extending the volume covered. To see how much, we must 341

consider an odd property of high dimensional spaces that Shannon used in his proof of the 342

channel capacity theorem [21]. Consider a power dissipation in a D = 100 dimensional 343

space. The power allows the system to move in a particular direction to select a particular 344

noise-sphere state. By the definition of a high dimensional space, 1% of the noise is in the 345

power dissipation direction while 99% of the noise is at right angles, so the noise in the 346
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power dissipation direction is only 1/100th of the total noise. This is negligible from the 347

viewpoint of a practical engineer like Shannon. So we effectively have a power vector with 348

magnitude
√
P at right angles to the noise vector with magnitude

√
N . The hypotenuse of 349

the resulting triangle is, thanks to Pythagoras: 350

rbefore =

√√
P

2
+
√
N

2
(18)

=
√
P +N (19)

(Fig. 5) and this is the radius of a sphere that encloses all of the noise sphere states. Since 351

this large sphere represents the state just before energy dissipation, I call it the before 352

sphere. It is represented by the transparent shell surrounding the gumballs in Fig. 2. 353

Likewise, after dissipation the system has settled into one of the smaller Gaussian noise 354

spheres (the gumballs) and so I call those the after spheres, with radius: 355

rafter =
√
N. (20)

For EcoRI the before state is the EcoRI molecule located nonspecifically by electrostatic 356

attraction anywhere on the DNA [57] and the after state is EcoRI bound to its specific 357

sites by hydrogen bonds [58] (but not yet cutting the DNA). Likewise, after absorbing a 358

photon, rhodopsin is in the before state and it transitions to an after state upon dissipation 359

of the photon energy as heat [18, 51, 52]. 360

P+N
P

N

Fig 5. Geometry of hyperspace vectors.

Following Shannon’s lead [21], we can now ask how many small after sphere states can 361

fit into the larger before sphere state? We find the maximum number by dividing the larger 362

sphere volume by the smaller sphere volume. Since the volume of a D dimensional sphere 363

is: 364

V =
π

D

2

Γ
(

D
2
+ 1

)rD (21)
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[59, 60] the maximum number of after sphere states M is: 365

M =
Vbefore

Vafter

(22)

=

(

rbefore
rafter

)D

(23)

=

√

P

N
+ 1

D

(24)

using equations (21), (19) and (20). 366

The number of bits needed to select one of the after states is the equivalent of the 367

channel capacity, which we could call the biological state capacity: 368

C = log2M (25)

=
1

2
D log2

(

P

N
+ 1

)

(26)

(bits per state change) (27)

Since the power P is the energy dissipated for this same before to after state change, the 369

units are ‘joules per state change’ and we can now follow Felker and Adler [18,22,44–46] by 370

defining the energy needed to gain a bit as: 371

E ≡ P

C
(joules per bit). (28)

There is a minimum for E [18] that we can find by taking the limit as P goes to zero using 372

l’Hôpital’s rule [61] after substituting equation (27) into (28): 373

Emin = lim
P→0

E (joules per bit) (29)

=
2 ln 2

D
lim
P→0

P

ln(P/N + 1)
(30)

=
2 ln 2

D
lim
P→0

1
1

P/N+1
1
N

(31)

=
2 ln 2

D
N (32)

Note that if the noise has a thermodynamic origin, then we can substitute equation (16) 374

into (32) to obtain the thermodynamic form of Emin in equation (4). 375

Now we are in a position to define the general Gaussian isothermal efficiency as the 376

minimum energy dissipation per bit (Emin) divided by the actual energy dissipation per bit 377

(E). We can then derive the efficiency formula by successively substituting in equations 378

(32), (28) and (27): 379

nt ≡
Emin

E
=

ln
(

P
N
+ 1

)

P
N

(joules per bit)

(joules per bit)
. (33)
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Remarkably, as with the derivation of the number of states M (equation (24)), all of the 380

irrelevant constants drop out to leave a pristine ‘unitless’ isothermal efficiency formula that 381

is only a function of P/N . This form is identical to the isothermal efficiency in equation (9) 382

derived from thermodynamics for communications and molecular machines (Fig. 4). 383

However, equation (33) shows that the result is more general because it only comes from 384

Gaussian distributions. This generalization of the channel capacity and isothermal 385

efficiency works because anytime a Gaussian distribution is observed, it represents noisy 386

energy influencing the system. For example, the roughly Gaussian distribution of 387

MacArthur’s famous warbler nesting heights [56] represents the birds having a preferred 388

height (µi), but the chosen location of the nest is disturbed by available branches and the 389

energy of wind puffs and wing flutters. 390

4 Discussion 391

In this paper I have shown that the channel capacity and the isothermal efficiency 392

equations can be derived not only from thermodynamics but more generally from the 393

assumption of Gaussian noise impinging on a high dimensional system. Since Gaussian 394

noise and high dimensionality are found at all levels of biology, these equations can be 395

applied universally to understand biological states. 396
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