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A Mathematical Theory of Communication

By C.E. SHANNON

INTRODUCTION

T HE recent development of various methods of modulation such as PCM and PPM which exchange

bandwidth for sipnal-to-noise ratio has intensified the interest in a general theory of comnmumication. A
basis for such a theory is contained in the important papers of Nyquist! and Hartley? on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages have meaning; that 1s they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actnal
message is one selected from a set of possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monoetonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pomted out by Hartley the most natural choice is the loganthmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continnous range of messages, we will in all cases use an
essentially logarithmic measure.

The loganithmic measure is more convenient for various reasons:

1. Itis practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2
logarithm of this immber. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, ete.

2. It is nearer to our intuitive feeling as to the proper measure_ This is closely related to (1) since we in-
‘mitively measures entities by linear comparison with commeon standards. One feels, for example, that
two punched cards should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information .

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a loganithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits. or more briefly bifs, a word suggested by
J.W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of
information. N such devices can store N bits, since the total number of possible states is 2V and log, WN_ N
If the base 10 is used the units may be called decimal digits. Since

logy M = logyp M/ logyy 2
3.32log;p M,
" Nyquist, H., “Certain Factors Affecting Telepraph Speed.” Bell System Technical Journal, April 1924, p. 324; “Certain Topics in

Telegraph Transmission Theory,” AJEE. Trans., v. 47, Apnl 1928, p. 617.
Hanley, R. V. L., “Transmission of Information,” Bell System Technical Journal, Tuly 1928, p. 535.
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A method is developed for representing amy commumication
system geometrically. Messages and the corresponding signals are
points in two “function spaces,” and the modulation process is a
mapping of one space into the other. Using this representation, a
number of results in communication theory are deduced concern-
ing expansion and compression of bandwidth and the threshold
effect. Formulas are found for the maximum rate of fransmission
of binary digits over a system when the signal is perturbed by
various types of noise. Some of the properties of “ideal” systems
which transmit at this maximum rate are discussed. The equivalent
number of binary digits per second for certain information sources
is calculated.

1. INTRODUCTION

A peneral communications system is shown schemati-
cally in Fig. 1. Tt consists essentially of five elements.

1) An Information Source: The source selects one mes-
sage from a set of possible messages to be transmatted to
the recetving terminal. The message may be of various
types; for example, a sequence of letters or numbers, as
in telegraphy or teletype. or a continuous function of time
f(£), as in radio or telephony

2) The Transmitter: This operates on the n

WFORMATION
SOURCE  TRANMSWITTER

RECEVED
SIGNAL

NOISE
SOURCE

Fig. 1. General communications system.

perturbations. Distortion ean, in prnciple, be corrected by
applying the mverse operation, while a perturbation due to
noise cannot always be removed, since the signal does not
always undergo the same change duning transnussion.

4) The Receiver: This operates on the received signal
and attempts to reproduce, from it, the original message.
Ordinarily it will perform approximately the mathematical
inverse of the operations of the transmtter, although they
may differ somewhat with best design in order to combat
noise

5) The Destination: This 1s the person or thing for whom

some way and produces a signal suitable for transmission
to the receiving pomt over the channel. In telephony, this
operation consists of merely changing sound pressure nto
a proportional electrical current. In telegraphy, we have
a encoding operation which produces a sequence of dots,
dashes. and spaces corresponding to the letters of the
message. To take a more complex example, in the case of
multiplex PCM telephony the different speech functions
must be sampled, compressed, quantized and encoded, and
finally mterleaved properly to construct the signal.

3) The Channel: This 1s mersely the medium used to
transmit the signal from the transmitting to the receiving
point. It may be a pair of wires. a coaxial cable, a band
of radio frequencies, etc. During transmission, or at the
teceiving termimal, the signal may be perturbed by noise
or distortion. Noise and distortion may be differentiated on
the basis that distortion is a fixed operation applied to the
signal, while noise mvolves statistical and unpredictable

‘This paper is reprinted from the PROCEEDINGS OF THE IRE, vol. 37, no.

1, pp. 10-21, Jan. 1949,
Publisher Trem Identifier S 0018-9219(98)01299-7

the is intended.

Following Nyquist' and Hartley ? it is convenient to use
a logarithmic measure of information. If a device has n
possible positions it can, by definition, store log,, 1 units of
information. The choice of the base b amounts to a choice
of unit, since log, 7 = log, clog.m. We will use the base
2 and eall the resulting units binary digits or bits. A group
of m relays or flip-flop cirenits has 2™ possible sets of
positions, and can therefore store log, 2 = m bits.

If it is possible to distinguish reliably M different signal
functions of duration 7" on a channel, we ean say that the
channel can transmit logy M bits in time 1" The rate of
transmussion is then log, M /1" More precisely, the channel
capacity may be defined as

e g lom M
C=fmr @

'H. Nyquist, “Certain factors affecting telegraph speed,” Bell Syst. Tech.
J,wvol 3, p 324 Apr 1924

R.V.L H; y, “The transmission of information,” Bell Syst. Tech.
7., vol 3, p. 535-564, Tuly 1928.
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Information of EcoRl DNA Binding

e EcoRlI - restriction enzyme

e EcoRI binds DNA at 5" GAATTC 3/

e information required:
6 bases x 2 bits per base =

12 bits

EcoRI sites

O'o'da ™ <0
5' 3
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Kopee = 1.6 x 10° =

e Average energy dissipated by one molecule as it binds:
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Energy Dissipation by EcoRlI

e Measured specific binding constant:

Kopee = 1.6 x 10° =

e Average energy dissipated by one molecule as it binds:

AG, .. = —kgTIn Kgpee  (joules per binding)

spec
e The Second Law of Thermodynamics as a conversion factor:
Emin = kT In2  (joules per bit)
e Number of bits that could have been selected:

Refnergy — _AGO/gmin
— kBT In Kspec/kBT In 2
= logy Kypec ~ SO SIMPLE!

= | 17.3 bits per binding
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EcoRI could have made 17.3 binary choices EcoRI sites
... but it only made 12 choices. 2_ --AI
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Information/Energy = Efficiency of EcoRl = 70%

EcoRI could have made 17.3 binary choices EcoRI sites
... but it only made 12 choices. 2_ --AI
Efficiency is %) —
‘WORK' DONE / ENERGY DISSIPATED = 1=
12 bits per binding 0.7 _ VI
17.3 bits per binding 0o dam< 1
5’ 3

The efficiency is 70%.




Information/Energy = Efficiency of EcoRl = 70%

EcoRI could have made 17.3 binary choices
... but it only made 12 choices.

Efficiency is
‘WORK' DONE / ENERGY DISSIPATED
12 bits per binding

= 0.7
17.3 bits per binding

The efficiency is 70%.

5I

T O N

EcoRI gites

.-AI
v

M <T Lo

18 out of 19 DNA binding proteins give ~70% efficiency.
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Efficiency of Muscle

e Experiments by Kushmerick's lab since (at least) 1969
e new work: 2008, 2011
e Weight lifting gives work done

e NMR coil gives ATP = energy used
e | Efficiency: 0.68 £ 0.09
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Tom’s Model of Muscle Mechanism
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Why are molecular machines 70% efficient?

EcoRI sites
70% efficiency appears widely in biology: ; 1

e DNA - protein binding - A‘

e rhodopsin g 1—

e muscle — V|
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e other systems

Why 70% efficiency?
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Like a key in a lock

which has many independent pins,
It takes many numbers

to describe the vibrational state

of a molecular machine
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Gaussians

e Pin motion x has a Gaussian distribution:

p(X)=e

1 r—p1)?

{1t = mean, o = standard deviation

e Gaussian distributions are generated by the sum of
many small random variables

e Drunkard’'s walk: Galton’s quincunx device!
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Two Gaussians

1 . (z—p)?

pl) = =5

credit: http://en.wikipedia.org/wiki/Pythagoras



Two Gaussians

1 ) 2
p(x) = e x e (1)

V2ro?

p(ry) = px) x p(y) (3)
x e x (4)
X e~ (T+) (5)
X e (6)

If p(x,vy) is a constant,

then r Is a constant.

credit: http://en.wikipedia.org/wiki/Pythagoras



Two Gaussians

1 ) 2
p(x) = e x e (1)

V2ro?

p(ry) = px) x p(y) (3)
x e x (4)
X e~ (T+) (5)
X e (6)

If p(x,vy) is a constant,

then r Is a constant.

Circular distribution!

credit: http://en.wikipedia.org/wiki/Pythagoras



1 Dimension

Energy

States

1 dimension is too simple!
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Spheres in 3 Dimensions




N Dimensional Sphere




Spheres tighten in high dimensions

Normalized Density
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Good Sphere Packing

e Good packing of spheres
gives a molecule
the capacity
to make selections efficiently

e Shannon's 1949 paper:
each gumball i1s a message

e For a molecule each gumball
Is a state
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N Dimensional Sphere Separation

Degenerate Sphere Forward Sphere

| \Q&“&‘ b

2%
-

BN N X
.‘5 \ ‘&k\"}’f":\-.
L vesihgle

L]
A )
N

H v Noise
%l v Power

Energy dissipated to escape the Degenerate Sphere must exceed the Noise



N Dimensional Sphere Separation

Degenerate Sphere Forward Sphere

| \Q&“&‘ b

2%
-

BN N X
.‘5 \ ‘&k\"}’f":\-.
L vesihgle

L]
A )
N

H v Noise
%l v Power

Energy dissipated to escape the Degenerate Sphere must exceed the Noise

v Power > v/ Noise



N Dimensional Sphere Separation

Degenerate Sphere Forward Sphere

| \Q&“&‘ b

2%
-

BN N X
.‘5 \ ‘&k\"}’f":\-.
L vesihgle

L]
A )
N

H v Noise
%l v Power

Energy dissipated to escape the Degenerate Sphere must exceed the Noise

v Power > v Noise SO Power > Noise



N Dimensional Sphere Separation

Degenerate Sphere Forward Sphere

| \Q&“&‘ b

2%
-

BN N X
.‘5 \ ‘&k\"}’f":\-.
L vesihgle

L]
A )
N

H v Noise
%l v Power
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Theoretical Isothermal Efficiency

e For molecular states of molecules with dgspqce ‘parts’
P energy is dissipated for noise N and

C' = dspace logs(P/N + 1) <= machine capacity

In( £ +1 ..
€ = <]YD )< molecular efficiency

1.00 1

0.69 4

0.55 1

0.46 A
0.40 A

0.00 P/N

The curve is an upper bound

e | If P/N =1 the efficiency is 70%!

T. D. Schneider, Nucleic Acids Research (2010) 38: 5995-6006



Dimensionality
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Like a key in a lock

which has many independent pins,
It takes many numbers

to describe the vibrational state

of a molecular machine



A Dimensionality Equation

Channel capacity of molecular machine:

P

C' = dspace l0go (N -+ 1) (bits per operation) (7)



A Dimensionality Equation

Channel capacity of molecular machine:

P

C' = dspace l0go (N -+ 1) (bits per operation)

Maximum of the information R is the channel capacity:

C > R.

(7)

(8)



A Dimensionality Equation

Channel capacity of molecular machine:

P

C = dspace 1085 (N + 1) (bits per operation) (7)

Maximum of the information R is the channel capacity:
C > R. (8)
Dimensionality of the coding space:
D = 2dpace (9)

since there are both a phase and an amplitude for each of the independent
oscillator pins that describe the motions of a molecule at thermal equilibrium.



A Dimensionality Equation

Channel capacity of molecular machine:

P

C = dspace 1085 (N + 1) (bits per operation) (7)

Maximum of the information R is the channel capacity:
C > R. (8)
Dimensionality of the coding space:
D = 2dpace (9)

since there are both a phase and an amplitude for each of the independent
oscillator pins that describe the motions of a molecule at thermal equilibrium.

Combining equations (7), (8) and (9) gives a lower bound for the
dimensionality:

2
p>_ & (10)
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Vishnu’s Observation

e In 1993 Vishnu Jejjala,
a graduated high school student

from the NCl-Frederick Student Intern Program (SIP)
a string theory physicist
pointed out that the equation gives a lower bound on the dimension.

e Vishnu suggested there could be another equation for an upper bound.
e He suggested that the two bounds might converge to give one number.
e He set out to find that equation.

e He did not succeed.



18 years later ...
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Key Discovery: July 2011

e Tom was reading a 1983 paper by the famous information theorist Jaynes.

e Jaynes pointed out that
the total energy in a molecule
depends on the number of degrees of freedom.

e Each degree of freedom carries kg1’ energy.

e But since they are independent, degrees of freedom are dimensions D!
e For n atoms there are 3n — 6 degrees of freedom.

e A molecule can use only some of these: D < 3n — 6.

e So the relevant thermal noise energy flowing through a molecule is:
N = L1kgTD  (joules per mmo) (11)

(mmo = molecular machine operation)

e Tom already had this equation in 1991!
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Rearranging the Equation to get the Dimensionality

e Tom's 70% discovery implies that the energy a molecule dissipates to make
selections must exceed this thermal noise:

P>N (12)
So plugging in N:
P> N =1ksTD (13)
Rearrange:
P
: > D. (14)
skgT

That's an upper bound on the dimensionality!

Vishnu was right!
There is an equation
for the upper bound!
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Convert to more useful form - Part 1 - Definitions

e The energy available in coding space for making selections is the free energy:
P = —AG° (joules per mmo) (15)

e The maximum bits that can be gained for that free energy is
Renergy = —AG®/Epin  (bits per mmo) (16)

e Use the second law of thermodynamics as an ideal conversion factor between
energy and bits:

Emin = kgT'In2  (joules per bit) (17)
e A measured isothermal efficiency, €, < €, is defined by the information

gained, R, versus the information that could be gained for the given energy
dissipation, Repergy:

€r — R/Renefrgy (18)



Convert to more useful form - Part 2 - Substitutions

e combining equations (15) to (18) gives

P

gminRenergy
kT In 2 Repergy

ksTRIn2/e,.

—
O

N
-

No
=



Convert to more useful form - Part 2 - Substitutions

e combining equations (15) to (18) gives
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Convert to more useful form - Part 2 - Substitutions

e combining equations (15) to (18) gives

e Inserting this result

e Equation (22) is an

P = gminRenergy
= kT In2 Repergy
= kgTRIn2/e,.

into equation (14) gives

2RIn 2

€r

> D

upper bound on the dimensionality
as a function of the information gain R
and the isothermal efficiency e,..

N /SN A/
N N =
= O O
N N N’

(22)
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Bounds on the dimensionality of molecular machines

e Combining the lower bound (10) with the upper bound (22)
2R 2R 1n 2
<D<

logy (5 +1) €r

e To simplify terminology, define p = P/N

e Notice that log,(p+ 1) = lnﬁff;”

e So

2R 1In 2 2R In 2
<D<
In(p+1) €y

A beautifully symmetrical equation!

(23)

(24)
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Pincers on the dimensionality of molecular machines

2R In 2
<
In(p+1) =

The dimensionality of a molecular machine is bounded
on the two sides by three factors:

e R - the information gain in bits
e ¢, - the real isothermal efficiency
e o - the normalized energy dissipation

As a molecular machine evolves:

p—1 The left hand side converges to 2R.
e, — In(2) | The right hand side converges to 2R.

BOTH SIDES converge to 2R




Vishnu was right
about the convergence!
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Efficiency curve bounds

€ — In(p+1) accessible
P states

Upper bound on ¢,
Lower bound on D

1 2 3 4

|—) p > 1 Lower bound on p
Upper bound on D

D = 2 R when the molecular machine is optimal

optimal
molecular
machine
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Dimensionality of Molecular Machines

If a molecular machine has evolved to
optimum, then the dimensionality is

D =2R

Let's calculate D for restriction enzymes!
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Sequence Logo

17 Bacteriophage T7 RNA polymerase binding sites

ttattaat acaacf cact at aa
aaat caat acgacg cact at aga
cggttaat acgact cact at a
aagt aat acgacf cagt at a
taattaatt gaacf cact aaa
Cgcttaat acgact cact aaa

6 of 17 sites

ACa

Schneider &
Stephens

Nucl. Acids Res.
18: 6097-6100
1990



OO0~ WNE

Iij—l-

Sequence Logo

17 Bacteriophage T7 RNA polymerase binding sites

MNOWUS OMOANAOA

Latta act at aa
adl Caat acgacf cact at aga
ttaat acgacjf cactat a

Aagl aat acgacf cagt at a
aal { aat t gaacf cact aaa

Cttaat acgacf cact aaa

6 of 17 sites

TAAA'

9\ Kep)

a

ACa

Schneider &
Stephens

Nucl. Acids Res.
18: 6097-6100
1990
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Restriction Enzyme Dimensionality Computation 1

Example:

e EcoRl

o5 GIAATTC 3

e 6 bases: selecting 1 in 4.

e Uncertainty before binding: 2 bits
Uncertainty after binding: 0 bits
Decrease in uncertainty: 2 bits

o6 X (2 —0) =12 bits

o2 x 2 =24 dimensions
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Restriction Enzyme Dimensionality Computation 2

Example:

o5 GTY/RAC 3’ Hinclll
o5 GTY|RAC 3
o GT AC :(2—0) x4 = 8 bits
l :(2—1)><2: bits
total — 8 + 2 = 10 bits

e |0 bits/2 = 5 compressed bases
e |0 bitsx2 = 20 dimensions

b,
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Restriction Enzyme Dimensionality Computation 3

Example:

o5 VCW 3’ Rlal
o> VCW 3
o C . 2 — 0 =2 bits
= A/T;: bit
V = A,C,G:
2 — logy 3 ~ 0.42 bits
total =2 + | + 0.42 = 3.42 bits
e 3.42 bits /2 = 1.71 compressed bases




Restriction Enzyme Dimensionality Computation 3

Example:

o5 VCW 3’ Rlal
o5 VCW 3
° C - 2 — (0 = 2 bits
= A/T;:
V = A,C,G:
) — 10g23 ~ (

bit

A2 bits

total =2 + | + 0.42 = 3.2

) bits

e 3.42 bits /2 = 1.71 compressed bases
e 3.42 bits X2 = 6.83 dimensions




Restriction Enzyme Coding Space Dimensionality

Example Sequence Compressed Bits Dimension  Number
Restriction Bases, A = R/2 R D =2R N
Enzyme (pins)
MspJI CNNR(9/13) 1.50 3.00 6.00 1
= Rlal VCW 1.71 3.42 6.83 1
Sgel CNNGNNNNNNNNNJ 2.00 4.00 8.00 5
AspBHI YSCNS(8/12) 2.50 5.00 10.00 1
SgrTl CCDS(10/14) 2.71 5.42 10.83 2
CviJl RG] CY 3.00 6.00 12.00 9
LpnPI CCDG(10/14) 3.21 6.42 12.83 1
M.NgoMXV  GCCHR 3.71 7.42 14.83 1
Taql TJCGA 4.00 8.00 16.00 1034
Bsp1286I GDGCHJ|C 4.42 8.83 17.66 15
Avall GJGWCC 4.50 9.00 18.00 346
Hin4l (8/13)GAYNNNNNVTC(13/8) 4.71 9.42 18.83 1
—> Hincll GTY|/RAC 5.00 10.00 20.00 480
PpuMI RG]GWCCY 5.50 11.00 22.00 20
—> EcoRlI GJAATTC 6.00 12.00 24.00 1738
PspXI VC|ITCGAGB 6.42 12.83 25.66 1
Rsrll CGJGWCCG 6.50 13.00 26.00 37
SgrAl CR{CCGGYG 7.00 14.00 28.00 73
KpnBI CAAANNNNNNRTCA 7.50 15.00 30.00 2
Sfil GGCCNNNNJ{NGGCC 8.00 16.00 32.00 34

3802 restriction enzymes from Rich Roberts’ Restriction Enzyme Database, REBASE



Restriction Enzyme Dimensionalities

Number of Restriction Enzymes

2000 -
1800 -
1600 -
1400 -
1200 -
1000 -
800 -
600 -
400 -
200 - |
0 —T - = 8 e -
0 4 8 12 16 20 24 28 32 36 40 44 48

Dimension D




Packing in 2 Dimensions

Square Packing Hexagonal Packing

T2 /(2 % 1)* = T79% 7/v/12 = 91%
of the plane filled of the plane filled
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hexagonal sphere packing green balls reveal square packing

face centered cubic packing



Packing in 3 Dimensions

face centered cubic packing more spheres show square packing



Higher Dimensional Sphere Packing?

What happens
in higher
dimensions?
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Leech Lattice Modem

Fig. 1. A hardware prototype of the 19 200 bit /s Leech modem.

Lang & Longstaff, IEEE J. on Selected Areas in Comm. 7:968-973, 1989
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Leech Lattice Modem

Fig. 1. A hardware prototype of the 19 200 bit /s Leech modem.

e Leech Lattice 19,200 bit/sec modem built by Motorola

Lang & Longstaff, IEEE J. on Selected Areas in Comm. 7:968-973, 1989
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Fig. 1. A hardware prototype of the 19 200 bit /s Leech modem.

e Leech Lattice 19,200 bit/sec mode _
e EcoRI decodes one of 4096 patterns probably using the Leech Lattice
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Leech Lattice Modem

Fig. 1. A hardware prototype of the 19 200 bit /s Leech modem.

e Leech Lattice 19,200 bit/sec mode

e EcoRI decodes one of 4096 patterns probably using the Leech Lattice
e Single molecules could be used to build a modem, in theory.

Lang & Longstaff, IEEE J. on Selected Areas in Comm. 7:968-973, 1989
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Both have good lattice packings.



Conclusions

Number of Restriction Enzymes

2000 - Sphere Packing Density
1800 -
1600 -

1400 1 §
12001 §&
1000 -
800 -
600 -
400 -
200 -
0

1) Q
D
S
* of v
®_ O
©
)
~, o5 I
I | n
T

0 4 8 12 16 20 24 28 32 36 40 44 48
Dimension D

e 0 base cutting restriction enzymes work in 24 dimensions
4 base cutting restriction enzymes work in 16 dimensions
Both have good lattice packings.

e Restriction Enzymes probably use the 24 dimensional Leech Lattice



Conclusions

Number of Restriction Enzymes

2000 - Sphere Packing Density
1800 -+
1600 -

1400 1 §
12001 &
1000 -
800 -
600 A
400 -
200 A
0

1) Q)
D
Q)
* f v
-
-,
)
~, o5 I
P | n
T

0 4 8 12 16 20 24 28 32 36 40 44 48
Dimension D

e 0 base cutting restriction enzymes work in 24 dimensions
4 base cutting restriction enzymes work in 16 dimensions
Both have good lattice packings.

e Restriction Enzymes probably use the 24 dimensional Leech Lattice
e Good packing can explain why restriction enzymes are so precise



Conclusions

Number of Restriction Enzymes

2000 - Sphere Packing Density
1800 -
1600 -

1400 1 §
12001 §&
1000 -
800 -
600 -
400 -
200 -
0

1) Q
D
S
* of v
®_ O
©
)
~, o5 I
I | n
T

0 4 8 12 16 20 24 28 32 36 40 44 48
Dimension D

e 0 base cutting restriction enzymes work in 24 dimensions
4 base cutting restriction enzymes work in 16 dimensions
Both have good lattice packings.

e Restriction Enzymes probably use the 24 dimensional Leech Lattice
e Good packing can explain why restriction enzymes are so precise
e Dimensionality is a clue to mechanism



Conclusions

Number of Restriction Enzymes

2000 - Sphere Packing Density
1800 -
1600 -

1400 1 §
12001 §&
1000 -
800 -
600 -
400 -
200 -
0

1) Q
D
S
* of v
®_ O
©
)
~, o5 I
I | n
T

0 4 8 12 16 20 24 28 32 36 40 44 48
Dimension D

e 0 base cutting restriction enzymes work in 24 dimensions
4 base cutting restriction enzymes work in 16 dimensions
Both have good lattice packings.

e Restriction Enzymes probably use the 24 dimensional Leech Lattice
e Good packing can explain why restriction enzymes are so precise

e Dimensionality is a clue to mechanism

e Leech Lattice coding is used for modern communications



Conclusions

Number of Restriction Enzymes

2000 - Sphere Packing Density
1800 -
1600 -

1400 1 §
12001 §&
1000 -
800 -
600 -
400 -
200 -
0

1) Q
D
S
* of v
®_ O
©
)
~, o5 I
I | n
T

0 4 8 12 16 20 24 28 32 36 40 44 48
Dimension D

e 0 base cutting restriction enzymes work in 24 dimensions
4 base cutting restriction enzymes work in 16 dimensions
Both have good lattice packings.

e Restriction Enzymes probably use the 24 dimensional Leech Lattice
e Good packing can explain why restriction enzymes are so precise

e Dimensionality is a clue to mechanism

e Leech Lattice coding is used for modern communications

e Single molecules probably can be used to do communications!
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