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We propose and describe a mechanism of orientational ordering of molecules and multimolecular par-
ticles that have incorporated Fe ions. The ordering is provided by a spatially nonuniform magnetic
field and by nonuniform distribution of ions in a molecule. Orientational distributions of particles
have been calculated for this mechanism. These distributions have been applied to estimate the degree
of orientational ordering in suspensions of biological nano- and micromolecules, as well as the times
of formation of the ordered state in a magnetic field and the ordered state disturbance as the field is
turned off. The estimates have allowed us to contemplate bioparticle types likely to implement the ef-
fect.

1. Introduction

The study of the magnetic properties of biological microobjects is one of the promising divisions of
biophysics (see, for example, [1]). A number of impressive results were obtained in this field (see
[2]), for example, the diamagnetic-to-paramagnetic phase transition in an oxy-Hb-O solution within
erythrocytes at a temperature of about 42C [3]. The magnetic measurement methods developed to
date are mostly applicable to proteins that bind metal ions such as Fe(2+), Fe(3+), Co(2+), and Ni
(2+). Only these proteins have response to an external magnetic field.

The possibility of artificial saturation of a protein molecule with a large number of Fe ions offers new
prospects. Iron ions have an intrinsic magnetic moment oriented along the external field. A material
saturated by Fe ions is magnetized and exhibits paramagnetic or even ferromagnetic properties, de-
pending on the volume density of incorporated ions. The magnetic interaction of components of these
bio-objects is nontrivial [4].

We consider it reasonable to examine the magnetic properties of Fe-saturated protein molecules (and
larger bioparticles) for their spatial orientation in a magnetic field. 

To get a lower estimate of the molecule orientation effect, we can neglect the rigidity of the bonds of
the Fe-ion electron orbits with the surroundings. In this approximation, the rotating mechanical mo-
ment having an effect on bioparticles in a uniform field is zero, since the field-induced bioparticle
magnetic moment is parallel to the external magnetic field vector.

In a nonuniform magnetic field, the force acting on a magnetized particle is proportional to the field
gradient. This force brings the molecule into translational motion. This motion causes a hydrodynam-
ic resistance force (friction) acting on the bioparticle from the surrounding liquid (water). In the case
of a nonuniform distribution of Fe ions in the bioparticle, the application points of these two forces do
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not coincide. As a result, a mechanical moment of forces arises, rotating the molecule. Thus, bioparti-
cles can be oriented in a nonuniform magnetic field even in the absence of finite rigidity of the bond
between the atomic magnetic moment and the surroundings. Hence, the nonuniformities of the mag-
netic field and the distribution of Fe ions in the bioparticle are the necessary conditions for the exhibi-
tion of the orientation mechanism described below.

We estimated the efficiency of this mechanism of iron containing bioparticle orientation for both sep-
arate protein molecules ( with sizes of about 10 nm) and larger (micrometer) bioparticles.

2. Interaction between a Fe-ion-containing bioparticle and a nonuniform magnetic field 

2.1. A Magnetic field H  acts on an iron containing bioparticle with a force (see [5])

m ( )F m H∇ ,                                                           

where   is the gradient over the observational point coordinates and m  is the induced magnetic mo-
ment of the bioparticle; parentheses mean the scalar product of vectors. The center of the region pop-
ulated by Fe ions may be considered the application point of this force. 

We calculate the magnetic moment of a particle with incorporated Fe ions using a model of paramag-
netism of free ions. In the unexcited quantum state, the ions are characterized by nonzero angular mo-
mentum and magnetic moments of electron shells, caused by the momentum. With no external field,
these moments are randomly oriented. As the magnetic field is turned on, the medium magnetization
is controlled by the competition of two effects: Fe-ion magnetic moments are oriented along the field,
while the perturbations caused by thermal motion tend to restore the uniform distribution of the mo-
ment orientations. The total magnetic moment m  of an ion ensemble is aligned along the external
field. In the case of not too strong fields and not too low temperatures, 
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m  is proportional to the external magnetic field H ,
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where N is the number of Fe ions, 20
B

3Gs cm0.93 10 - × ×   is the Bohr magneton, k is the Boltz-

mann constant, and T is the Kelvin temperature. The coefficient G is defined by the orbital and spin
quantum numbers of the ground state [6]. In metal complexes, where the orbital moment is much
smaller than the spin moment, the coefficient G is approximately given by 

( 2)G n n  ,                                                        

where n is the number of unbound electrons per ion. An analysis of the data [7] for iron ions in vari-
ous compounds yields the value G from 4.7 to 6, which agrees with Eq.(4) (when n = 4 or 5) to the
accuracy appropriate for estimates. Hereafter we use the average value of data [7], G = 5.6. We note
that  condition  Eq.(3)  of  the  magnetization  linearity  is  obviously  met  at  the  reasonable  values

4 Oe K10 , 300 H T  .
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The model yields a lower estimate of the orientation degree of iron containing molecules since it ne-
glects two effects which can increase the orientation degree. First, we neglect stresses in the molecule
interatomic bonds, arising as the Fe-ion magnetic moment is turned (that is, electron orbits are turned)
in the external magnetic field. In other words, we neglect that the ion magnetic moment has a nonzero
rigidity of the bond with the protein molecule. Typically, the Fe ion is bound with its neighbors by
four interatomic bonds. The turning of the Fe-ion electron orbits should induce an additional moment
turning the whole molecule in a required direction even in a uniform magnetic field. To estimate the
rigidity of the bond of the Fe-ion magnetic moment with the biomolecule, one should comparatively
study the NMR spectra of iron incorporations in the protein molecule and the spectra of free iron
atoms. This study would be an experimental method for estimating the bonding energy.

Second, we neglect the interaction between the magnetic moments of Fe ions, supposing that they are
exposed to the external field only. Hence, the induced magnetic moment of the whole region of incor-
porated ions is equal to a simple sum of the moments induced by the external field in separate ions. In
a close arrangement of Fe ions, this interaction strengthens the magnetization of the particle. If the
distance between Fe ions is shortened to several ion radii, an ion ensemble becomes a typical ferro-
magnet and the induced magnetic moment of the medium increases many times in comparison with
the paramagnetic medium. In the intermediate case of moderate interatomic spacings, partial manifes-
tation of ferromagnetism can be approximately taken into account after substitution of the coefficient
G in Eq. (3) with  Geff > G. Determination of  Geff  for the region of ion incorporations in protein
molecules is to be a subject of further expected studies to refine these estimates. For now we can just
argue that the actual orientation degree of protein molecules and iron containing particles should ex-
ceed the estimate given above.

The substitution of Eq.(3) into Eq.(1) using the equation 0][  H  yields the magnetic force
2 2
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where the energy density of the magnetic field is given by 
2
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H

w

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2.2. The necessity of high nonuniformity of the magnetic field for efficient turning of iron containing
particles imposes strict requirements upon the experimental conditions. These requirements are met,
for example, by the field induced near a thin ferromagnetic wire (with the radius a ~10–2–10–4 cm )
transversely magnetized by the uniform magnetic field 0H . In this case, even moderate fields (sever-
al hundred Oersteds) magnetize the ferromagnetic wire up to saturation [5] and induce a magnetiza-
tion vector sM  (the magnetic moment of microcurrents per unit volume of the medium [5]) whose

direction coincides with that of the vector 0H . The magnetization value Ms reaches about 2000 Gs
(1700 Gs for iron [8]). A ferromagnetic wire magnetized in such a way induces a secondary highly in-
homogeneous nonuniform field  sH  around itself. This field can exceed the uniform magnetizing

field H0 near the wire by dozens of times (see Eq.(8) below). We propose to employ the wire sec-
ondary field for orientating protein particles along the axis normal to the wire. This axis is parallel to
vectors sM  and 0H .
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We introduce a Cartesian frame of reference with the  x axis directed along 0H ; axis  z is directed
along the wire axis (see Fig.1). The nonuniform magnetic field induced by the wire can be written via
the integral over its cylindrical surface S, 
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,                                         

where R  and  sR  are the vectors from the coordinate origin to the observation point and to the
cylinder (wire) surface, and n  is the unit vector of the normal to this surface. The integration yields
the components of the wire magnetic field vector, 
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where r and  are the polar coordinates in the xy plane. We note that the direction of the wire mag-
netic field does not coincide with that of the polar vector r ={x,y,0}, except for the points on the
axis x. 

The magnetic field acting on a particle is given by 

s 0 H H H .                                                           

Near the wire, where the field H0 can be neglected in comparison with the wire field Hs  (under the
experimental conditions considered above: an iron wire at Н0 ~ 300 Oe), magnetic force Eq.(5) is di-
rected to the wire axis,

  22 4
B s

m 5

cos
8

sin
3

0

N G M a

kTr


 


 
  -  
 
 

F .                                 

3. Time for a bioparticle to turn and the optimum configuration of magnetic incorporations

3.1. In addition to the magnetic force, the bioparticle is subject to hydrodynamic resistance forces
caused by the surrounding liquid. Protein molecule sizes are of the order of lp ~ 10–6 cm, while the
size of large bioparticles considered here is  lp ~ 10–4–10–3 cm. At these both scales, the Reynolds

number p2Re= vl   ( and  are the water density and dynamic viscosity and v is the charac-

teristic velocity of motion) is much less than unity. Therefore, the resistance forces of the surrounding
liquid can be considered to be proportional to the particle velocity [9]. At these scales, we can also ne-
glect inertial effects. Thus, the problem is reduced to a quasi-static one (time is only a parameter), and
the molecule motion equations are transformed into the equilibrium conditions of a solid. These con-
ditions allow the unique determination of the velocities of the bioparticle translational and rotational
motions depending on its position and orientation. The motion mode is almost instantly established in

a time of the order 2
p 3l   ~ 10–5–10–11 s [9]. Here we neglect the diffusion effects caused by
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thermal motion of the liquid molecules surrounding the particle. These effects will be taken into ac-
count below in the calculation of the orientational distribution of particles.

To estimate the time of the turn of an iron containing bioparticle in a magnetic field and the influence
of a nonuniform arrangement of incorporations, we consider the simplest model of two rigidly joined
spheres (see Fig.2). One sphere with radius r1 is uniformly filled with Fe ions and uniformly magne-
tized. Another sphere with radius r2 contains no incorporations and is not magnetized. Magnetic force
Eq.(5) acts on the former sphere, being applied to the sphere center. As an estimation, we suppose
that the mechanical forces and the liquid resistance moments may be calculated separately for either
sphere. The hydrodynamic resistance forces are distributed over the sphere surface. We also suppose
that the total action of liquid may be reduced to the Stokes force (resistance force of translational mo-
tion) applied to the sphere center, 

1,2 1,2 1,26 r  -F v ,                                                     

where 1,2v  is the motion velocity of the center, as well as to the mechanical moment of rotation re-

sistance,
3

1,2 1,28 r -Kω ,                                                     

where ω  is the rotation angular velocity [9].

To make things simpler, we suppose that the particle axis (that is, the vector 21r  from the second

sphere center to the first sphere center) lies in the plane normal to the wire (axis z), hence the particle
makes plane-parallel motion in this plane. The particle coordinates meet the condition y/x<<1. The
motion equation is reduced to the bioparticle equilibrium condition, that is, to two equal-zero compo-
nents of the resulting force,

m 1 2 0  F F F ,                                                         

and the total mechanical moment, which, apart from Eq.(12), also incorporate moments of forces Eq.
(5) and Eq.(11).  As an axis of moment reference, we take the axis parallel  to the wire, passing
through the second sphere center. Then the equation of moments is written as

21 m 1 1 2( ) 0      r F F K K ,                                        

where the brackets mean the vector product. Equilibrium conditions Eq.(13) and Eq.(14) in the com-
ponents yield
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where   is the angle between the particle axis and the vector H  (axis x in Fig.2), vx,y are the veloci-
ty components of the second sphere center. Eliminating the velocities vx,y from Eq.(15), we arrive at
the differential equation for the bioparticle orientation angle,

2 m

2 2
1 2 1 1 2 2
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2 ( ) (4 4 )

r Fd
dt r r r r r r
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 -
 - 

.                                  

The magnetic force Fm in the layout of Fig.1 is given by 
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Further we suppose that the value of  x/a varies insignificantly within the time of particle rotation.

This supposition is substantiated by the fact that the ratio of the times of particle rotation r and parti-

cle incidence on the wire f is defined by the ratio of the corresponding motion scales, xl /~/ pfr 

. A more accurate estimate can be found from Eq.(15). If r1<<r2 and H0/Ms<< (this is exactly the
field-to-magnetization ratio which may be advantageously employed in an experiment), the ratio of
times is estimated as 
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Hence,  the  condition  1/ fr   is  met  if  the  particle  is  far  enough  from  the  wire,

2 /( ) 0.04r x a-  .  For protein nanoparticles,  the strong inequality  ar 2  is met and, even at
4 7

2cm cm10 , 1.2 , 4 10a x a r- -  ×  × ,  the ratio of these times is much smaller than unity,
1

fr 10/ - . For a micrometer bioparticle, the condition 1/ fr   is met at  x > 10–2 cm.

Integrating Eq.(16) at the fixed particle coordinate x, we get the estimate of the time of its complete

turn from the vertical ( = /2) to the almost horizontal (   rad0.1  - ) position, 
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3.2. We numerically estimate the time of total orientation of the bioparticle for the protein molecule
under  the  typical  experimental  conditions:  H0=300 Oe,  Ms=1700 Gs  [8],  G=5.6,

2 1 1g cm s10 - - -× , T = 293 K, N=48 (ferritin, see [10]) and N = 200 ions (a cluster, consisting

of several ferritin molecules). Let the iron wire be thin, a = 10–4 cm, and the size of the iron free re-

gion of the molecule be r2 = 4×10–7 cm. Figures 3 and 4 display the dependences of the particle ori-
entation time Eq.(19) on the ratio of model sphere radii (Fig.3 at x = 1.5 a) and on the distance to the
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wire (Fig.4 at r1/r2  0). Figure 3 shows that time of the particle orientation is decreased in the mag-

netic field at r1/r2  0, that is, as the nonuniformity of the distribution of magnetic incorporations
increases. In this case, the particle structure tends to the limiting value: the protein molecule with
point (concentrated to the maximum) localization of Fe-iron-ion incorporations. In this structure, the
torque moment is a maximum, and the surrounded fluid flows with the least resistance. It is the struc-
ture of the incorporations that is optimal for molecule orientation in the magnetic field. The typical
times (calculated neglecting rotational diffusion) of the complete turn of a molecule are shown in
Fig.4. However, we note that a turn of each molecule of the ensemble at an angle much smaller than

  /2 in Eq.(19) is sufficient for anisotropy (such as optical) effects to be manifested. Before
turning on the magnetic field, the molecule orientations are uniformly distributed over all angles.
Hence, no anisotropy-related effects can be observed. When the field is "on", molecules begin to ori-
ent themselves along it. However, the orientation is counteracted by rotational diffusion taking place
due to thermal motions of surrounding liquid molecules. The competition of the two processes creates
a statistical equilibrium anisotropic orientational distribution of molecules. Below we will show that
field-induced changes in the orientational distribution are small in our case. The average change in

the orientation angle of a separate molecule is much less than /2, and turn time is much shorter than

r. In this case, the settling time of the anisotropic distribution after turning on the magnetic field is
controlled by the rotational diffusion time (see Sec.3.3), rather than by the magnetic field. The com-

plete turn time r calculated above is an upper estimate of the settling time, exceeding the true value
by a few orders of magnitude in our case. 

3.3. In micrometer bioparticles, the number N of magnetic Fe ions can be orders of magnitude larger
if the first sphere in the model of Fig.2 is made from a superparamagnetic biomaterial with rather

high magnetic permeability . The above-mentioned relations and estimates may also be applied to
similar microparticles at a given magnetic permeability if the number N of Fe ions is written in terms
of the magnetic permeability and the size of the magnetized region. The approximate equation for N

may be derived by comparing Eq.(3) with the equation 3
1( 1) 3r -m H  ( 1 1 -  ) for the

magnetic moment induced in the first (paramagnetic) sphere,
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In this case, the equations for magnetic force Eq.(5) and complete turn time Eq.(19) of the bioparticle
yield
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As will be shown below, the reverse situation is typical for micrometer bioparticles: the orientational
distribution can be strongly anisotropic, and the distribution settling time corresponds to the dynamic
estimate Eq.(21).
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4. Orientation angle distribution of iron containing bioparticles. Anisotropy settling and distur-
bance times

4.1. To determine the orientational distribution of iron containing bioparticles in the field of a magne-
tized  wire,  we  consider  an  ensemble  of  these  particles.  We  utilized  the  optimum model  with

p21221 , rrrrr  , defined above. This simple model, with a quasipoint localization of Fe ions,
makes it possible to discard the above restrictions imposed to the particle position and orientation.
Furthermore, for this model we can immediately use the results of the theory of rotational Brownian
motion of spherical particles. We consider an arbitrary position of bioparticles. The sphere center co-
ordinates {x,y,z} are bounded only by the condition 1/ fr   (see Eq.18), when these coordinates
may be considered approximately constant for each particle. The bioparticle orientation is also sup-

posed to be arbitrary and is now described by two angles {, }. These are the angular coordinates

of the vector 21r  from the sphere center to the point of magnetic incorporation localization in the

spherical frame of reference, whose preferred axis is parallel to the wire magnetization vector sM
(that is, the axis x of the initial Cartesian system, see Fig.2).

The relation 21 ~ rr  is typical for micrometer bioparticles; therefore, the results obtained within the
model of quasi-point incorporation localization require correction. This is mostly related to the correc-
tion of the mechanical moment of the liquid rotation of the resistance (see Eq.12)). Nevertheless, this
model yields simple relations, which should in turn yield accurate (at least in the order of magnitude)

estimates at 21 ~ rr  as well.

The model particle is subject to only two concentrated forces: magnetic Eq.(5) and Stokes Eq.(11). As
follows from the equilibrium condition, they are equal in magnitude and opposite in direction. The
magnetic and the Stokes forces are applied at the point of magnetic incorporation at the sphere surface
and at the sphere center, respectively. The bioparticle rotation maintains the mechanical moment of
this pair of forces, and this moment is equal to the vector product 

m 21 m[ ] K r F .                                                  

Equation (22) is similar to the expression of a mechanical moment rotating a dipole in a uniform field.
Hence, taking into account Eq.(1), the potential energy for the iron containing bioparticle is given by 

21 m s 21( ) ( )( )U  -  -r F m H r∇ .                                    

In contrast to the energy of a dipole placed into a uniform field, the effective energy of the orientation
of a magnetic particle Eq.(23) is defined by the spatial derivative of the magnetic field with respect to
the direction of the induced magnetic moment of incorporations. In the paramagnetic model of incor-
porations, Eq.(3), with a given N, the orientation energy is written as

 wr
kT

NG
U B - 21

22

3
4 

            

To express this in terms of the magnetic permeability (µB) and the size of the magnetized region (r1),
we use equation 20 to obtain:
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For the scheme for inducing a high-gradient magnetic field (see Fig.1), the calculation of orientation
energy Eqs.(24, 24a) yields
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Comparison of Eqs.(24, 24a) to the energy of a dipole oriented in the uniform field [11,12] shows that
the effective dipole moment is given by 
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if the normalized gradient of the energy density 214 r
w

H


  acts as the effective field. 

4.2. The balance between the directed rotation of bioparticles under the action of moments (Eq.22 and
12), as well as rotational Brownian motion, results in an equilibrium Boltzmann orientational distribu-
tion of these particles (see, for example, [12,13]), 
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The transition to the Boltzmann distribution Eq.(27) from the uniform distribution 

0
1

( , )
4




                                                                

that existed before turning on the field is given by the rotational diffusion equation [11,12]:
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where 
21

21

( )w
s

w


×

r

r

∇

∇  is the cosine of the angle between 21r  and the energy density gradient w∇

.  The approximate equation cos cos sin cos coss        is valid near the wire, where
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H0 << Hs ,  (this region is appropriate for molecules with  rp << a). The rotational diffusivity D is
given by 

3
p8

kT
D

r 
                                                            

The parameter  defines the steady-state anisotropy degree,

mU

k T
  ,                                                               

where mU  is the maximum orientation energy achieved at  s = –1.

For nanoparticles (molecules), the values of  are small at reasonable temperatures. For example, es-
timation for the layout of Fig.1 at the parameters of Sec.3.2 yields
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In the case of micrometer bioparticles, the parameter  can be much larger than unity. We estimate 
for small values of the magnetic field and its gradient, H = 300 Oe, H = 200 Oe/cm. It is easy
to get these values: they take place, for example, in the layout of Fig.1 at a rather long distance from
the wire, x = 10-2 cm, at a = 10-4 cm, H0

 = 300 Oe, Ms = 1700 Gs. The condition 1/ fr   (see

Eq.(18)) is already met at this distance from the wire. For bioparticles with sizes r1 = r2 = 1.4×10-

4 cm, containing a superparamagnetic incorporation ( = 1.1), we find   20. In this case, distribu-
tion Eq.(27) is close to the Dirac delta function.

To determine the settling time of the equilibrium distribution,  we consider,  proceeding from the

above estimates, the solution of Eq.(29) in two extreme cases,  << 1 and  >> 1, which are impor-
tant for biomolecules and micrometer particles, respectively.

4.2.1. In the former case, we find the solution to Eq.(29) by expanding the distribution function 
into the series with respect to small  ,

   
2 2

2 2 61 (3 1)
1 1 e 2 3e e

4 12
D t D t D ts

s





- - - -
   -  - ê ú

 
.     

This equation yields the estimate of the settling time   of the equilibrium distribution function Eq.
(27) after turning on the magnetic field, 

3
p41

2

r

D kT


   .                                                    

With  << 1, the settling time depends only on the biomolecule size, liquid viscosity, and tempera-
ture. For the scheme of Fig.1, at the field and biomolecule parameters considered in Sec.3.2, we have 
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7 s2 10 -
  ×  ,                                                       

which is by a few orders of magnitude less than the time, r, in the dynamic model given by Eq.(19),

because the small turn angle (of the order of  ) in Eq.(27) in comparison with Eq.(19). An isotropic
distribution Eq.(28) after turning off the field is restored on the same time scale Eq.(34) and Eq.(35).

4.2.2. In the second case, it follows from  >> 1 that 
ln( )

s
  


; that is, the diffusion flow in

Eq.(29) is weak in comparison to the drift situation. In this case, Eq.(29) is reduced to the equation

2(1 )D s
t s

    - ×   
,                                               

which has an analytical solution meeting the initial condition 
0

1
( , )

4t



   :

    21
cosh sinh

4
Dt s Dt 


  - ×    .                            

Equation (37) yields the estimate of the settling time   of the equilibrium anisotropic distribution
after turning on the magnetic field, 

2
p

3
1

61

( 1)

r

D r w




   
- ∇

 .                                           

Let us compare Eq.38 to turning time Eq.21 for the model of Fig.1. Substituting Eqs.6, 8, and 9 into

Eq.38 and putting 1 2 pr r r   in Eq.21, we find that the time r differs from  only by a numeri-
cal coefficient of about three. This difference is actually caused only by the different definitions of

these times:  is the characteristic scale of the orientation time variation and r is the time of the par-

ticle to complete a turn to an almost horizontal position (   rad0.1  - ). Hence, the dynamic

orientation mode is achieved at  >> 1, which is described by Eqs.11 through 16. This case is impor-
tant for rather large (micrometer) bioparticles. In distribution function Eq.(29), the dynamic mode cor-
responds to a negligible diffusive flow.

In the case where  >> 1, after turning off the field, the isotropic distribution Eq.(28) is restored with

a characteristic time ,off , differing from that given by Eq.(38). The isotropic distribution is restored

according to the rotational diffusion mechanism; independently of  , the restoring time ,off  is given
by

3
p

,off

41
2

r

D kT


    .                                                   
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When  >> 1, the time ,off , is longer than the anisotropy settling time Eq.(38) by approximately a

factor of /2. Thus, the disorder at  >> 1 for rather large particles and strong magnetic fields is re-
stored slower than the particle orientation.

We estimate the  characteristic times for micrometer bioparticles  with the parameters of Sec.4.2:

H = 300 Oe, H = 200 Oe/cm,  = 1.1, r1 = r2 = 1.4×10–4 cm. In this case, the parameter  is
about 20. At this value, the steady-state orientational distribution is strongly anisotropic. Almost all
the bioparticles are oriented antiparallel to the gradient w∇ . For a nonuniform field, according to the
layout of Fig.1, this means that almost all the bioparticles oriented so that the paramagnetic incorpora-
tions are closed to the wire while the non paramagnetic portion is further away. In this case, the char-

acteristic anisotropy settling and disturbance times are r s
1

1
3

      and ,off s10  , respec-

tively.

5. Anisotropy effects in protein molecules,  << 1

The attainable anisotropy of the equilibrium distribution Eq.(27) is insignificant because of the rather
small sizes of biomolecules Eq.(32). Let us consider the possibility to measure this anisotropy using
the layout of Fig.1 with a nonuniform magnetic field.

The possible experimental methods for measuring the anisotropic orientational distribution of protein
molecules can be classified into two groups.
 
5.1. The methods of one group are based on linear effects; the values observed are proportional to the

cosine (averaged over distribution Eq.(27)) of the tilt angle  of molecular axes to the magnetization

vector sM  (see Fig.1), 

2

0 0

cos ( , ) cos sind d
 

      
æ ö

   ç ÷ç ÷
è ø
  .                              

Using the smallness of anisotropy Eq.(32), and expanding the exponent in Eq.(27) into a series with

respect to small parameter  =1, from Eq.(40) we arrive at

 
 

22 2 2 2 2
B s p s 0

3
2 2 2 2

4 2 3
cos

9

N G M r a x M a H x y

k T x y

  


  -    -


.                 

The dependence of cos   on the arrangement of protein molecules with respect to the magnetized
wire is shown in Fig.5. The calculation was carried out for the same parameters as found in Sec.3.2:

rp = 4×10–7 cm,  T = 293 K,  H0=300 Oe,  a = 10–4 cm,  Ms=1700 Gs.  The average cosine of the
orientation angle strongly abates as receding from the wire even at a distance of the order of its ra-
dius. As expected, the maximum anisotropy should be observed for molecules arranged in the vicinity
of the wire surface near plane zx: in this case, cos   is estimated as 
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22 2 2
B s p

2 2max

8
cos

9

N G M r

k T a

 
   .                                   

One can see in Fig.5 that molecules arranged on each side of plane yz are oriented in opposite direc-
tion because the cos   sign reverses. Hence, the total linear effect over all the molecules vanishes.

To observe the anisotropy using linear effects, one should separate the halfspace into x < 0 or x > 0.
When optical  effects  are  used  to  measure the  anisotropy,  an observation position can be easily
achieved by exposing a space region on one side of the wire to a focused laser beam. To determine
the quantitative characteristic of the total linear effect of the anisotropy measurement, we integrate
cos   over all possible molecule coordinates meeting the condition x < 0, and multiply it by the

iron containing molecule density np. The physical meaning of this integral characteristic is the effec-
tive number N1 of molecules completely oriented in the halfspace. The problem is homogeneous with

respect to coordinate z, and N1 is interpreted as the specific (calculated per wire unit length) one. As
a result we arrive at

 
2 2 2

22
B s s 0 p

l p p2 2

0

8 2
cos

27
x y a

x

N G M M H r a
N n dx dy n

k T

  


 


-
    .     

The integral anisotropy characteristic Eq.(43) increases with the wire radius,  a.  Furthermore, the
above-mentioned spatial selection should be provided for the linear measurement of anisotropy. In
this case, the efficiency of a spatial grid consisting of many parallel magnetized wires is not high. It is
a better practice to employ a single sufficiently thick wire, or a few wires, maintaining spatial selec-

tion for each. If the density of iron containing molecules is np = 4×1016 cm–3 and the wire radius is
a = 10–2–10–1 cm under the above-mentioned experimental conditions, the effective number of com-

pletely  oriented  particles  is  Nl  (2×104–2×105) cm–1 for N = 4  (hemoglobin),  Nl  (2×105–

2×106) cm–1 for N = 48  (ferritin),  and  Nl  (106–107) cm–1 for  N = 200 (probable  candidate
molecule). These values are quite measurable.

5.2. If the measurement of the anisotropic orientation of molecules is based on nonlinear effects, the

values observed are proportional to the quadratic characteristic 2cos 1 3 -  averaged over distribu-

tion Eq.(27),

2
2 2

0 0

1 1
cos ( ) ( , ) cos ( ) sin( )

3 3
d d

 

      
æ ö

-   × × -ç ÷ç ÷
è ø
  .              

To calculate integral Eq.(44), condition Eq.(32) is also used; as a result we arrive at
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The dependence of 
2 1

cos
3

 -  on the molecule arrangement with respect to the magnetized wire

is shown in Fig.6. The calculation was carried out with the parameter values of Fig.5. The orientation
degree strongly decreases with the distance from the wire and is maximum for molecules arranged in
the vicinity of the wire surface near plane zx; the maximum of this value is estimated by the equation

22 2 2

2
2 2
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sB p

2
81 2

cos
3 5 9

N G M r

k T a

 


 
ê ú  - 
ê ú
 

 
 

.                              

Figure 6 shows that the total quadratic effect over all the molecules does not vanish. To determine the
quantitative characteristic of this effect in the measurement of the anisotropy induced by a wire, we

integrate 2 1
cos

3
  -  over the whole space except for the wire volume, multiply it by the iron con-

taining molecule density np and by a factor of 3/2. The physical meaning of this integral characteris-
tic Nn1 is the effective number of completely oriented molecules for the measurement of distribution
anisotropy using nonlinear effects. The problem is homogeneous over the coordinate z; therefore, we
do not integrate over z. The parameter Nn1 is interpreted as the specific one, calculated per unit
length of the wire, 

 
2 2 2

43 2 4 2 2 2 2 2
B s 02

nl p p4 4

s p 23 1 2
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2 3 135
x y a

N G M r M H
N n dx dy n

k T

  


 


 -  .

Integral  characteristic  Eq.(47)  is  independent  of  the  wire  radius.  For  estimations,  we  put

rp =4×10–7 cm,  T = 293 K,  Ms = 1700 Gs,  and H0 = (300–3000) Oe. Then, at a density of iron

containing  molecules  np
 = (1016–1017) cm–3,  we  have  Nn1  (5×10–6–5×10–5) cm–1 for N = 4

(hemoglobin),  Nn1  (10–3–10–2) cm–1 for N = 48  (ferritin),  and  Nn1  (10–2–10–1) cm–1 for
N = 200 (probable candidate molecule).

In a nonlinear measurement, the anisotropy integral effect may be significantly enhanced by using a
structure of many parallel magnetized wires. The effect of a solitary wire is independent of its thick-
ness a (see Eq.47); therefore, wires as thin as possible should be used in the structure, which would
allow denser arrangement. This is because the summation of the effects from each wire is effective
when neighbors do not strongly decrease the gradient of the field induced by a solitary wire. More-
over, the size of the molecule orientation region (at rp << a) is of the order of a near a solitary wire.
Hence, the allowed distance between the wires is shortened as their radius decreases. A preliminary

14



analysis shows that the distance dy between the wires should be long (dy>10×a) in the direction per-
pendicular to the magnetizing field. This is because the field of the neighbors arranged in this direc-
tion is directed oppositely to the eigenfield of each magnetized wire (see Eq.10). Wires may be more
densely arranged in the direction parallel to the magnetizing field (along the x axis). According to

preliminary estimate, the optimal distance between the axes of neighboring wires is (3–4)×a in this
direction. Due to an increase in the total number of molecules appearing in a sufficiently strong
nonuniform field, the gain multiplicity of the integral effect of the anisotropy measurement using this
multiwire grid structure can be of the order of the total number of wires. Therefore, the above esti-
mate of the effective number of completely turned molecules can be increased by a few orders of
magnitude. For example, in the case of optimal filling of a 1cm3 volume with wires having radius
a = 10–4 cm, where volumes extended along the axis z are more advantageous in practice, because
they require fewer wires, the effective number of oriented molecules in this volume can reach 104 for
ferritin (N = 48) and 105 for a ferritin cluster (N >100). It should be emphasized that, according to
Eqs.34 and 35, the characteristic orientation of time does not exceed 10–6 s  if the molecule diameter
is smaller than 10–6 cm.

6. Conclusion

The necessary conditions of the biomolecule orientation mechanism proposed are a nonuniform exter-
nal magnetic field and a nonuniform distribution of Fe ions in the biomolecule. This mechanism is
universally valid in the presence of these nonuniformities and can vary only quantitatively. We em-
phasize that our calculation yields only a lower estimate of the orientation effect, because two other
mechanisms can also manifest themselves: first, the finite rigidity of the Fe-ion magnetic moment
bonds with the neighboring atoms and second, ferromagnetic ordering. Additional mechanisms can
significantly enhance the orientation effect.  Analysis  and estimation of the prerequisites of these
mechanisms is a subject of further investigation. 

The effect is enhanced by a few orders of magnitude by a grid structure consisting of many parallel
thin magnetized wires. The wires may be more densely arranged along the field than across the field.
Optimization of the parameters of the grid structure is also a promising direction, especially  for
biomolecules whose size is significantly smaller than the wire diameter.

The conditions of realization and observation of the orientation mechanism, as well as the prospects
of its application, may be radically improved by passing from molecules to micrometer bioparticles.
Simple bioparticles composed of two spherical components, one of which reveals superparamagnetic
properties [5], were shown to be completely oriented in reasonable magnetic fields within a time of
the order of a second. The orientation time can be decreased by using complicated (for example, uni-
directionally extended) structures, stronger magnetic fields and artifitially constructed superparamag-
netics. 
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Figure captions

Fig.1. Scheme of induction of a high-gradient magnetic field.

Fig.2. Model of an inhomogeneous bioparticle with paramagnetic incorporations; the forces acting
upon a bioparticle moving in a liquid.

Fig.3. Dependence of the time of a complete turn of the molecule on the ratio of model sphere radii:

r1 is the radius of the iron containing sphere, r2 = 4×10–7 cm  is the radius of the sphere without in-
corporations.  The  dependence  was  calculated  at  a=10–4 cm,  H0 = 300 Oe,  Ms=1700 Gs,  and

G = 5.6  for N = 48 (a), and N = 200 (b); the distance to the wire is x = 1.5×a.

Fig.4. Dependence of the time of a complete turn of the molecule on the distance to the magnetized
wire at r1 = 0. The values of other parameters are the same as in Fig.3.

Fig.5. Average cosine cos   of the orientation angle of protein molecules versus the normalized

coordinates (x/a and y/a) defining the molecule position with respect to the magnetized wire. The
values of the parameters are the same as in Fig.4. Axis x is parallel to the wire magnetization vector.

Fig.6.  Coordinate  dependence  of  the  orientational  ordering  degree  
2 1

cos
3

 -  of  protein

molecules. The values of the parameters are the same as in Fig.4.
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