
# Discovery of Novel Tumor Suppressor p53 Response Elements Using Information Theory

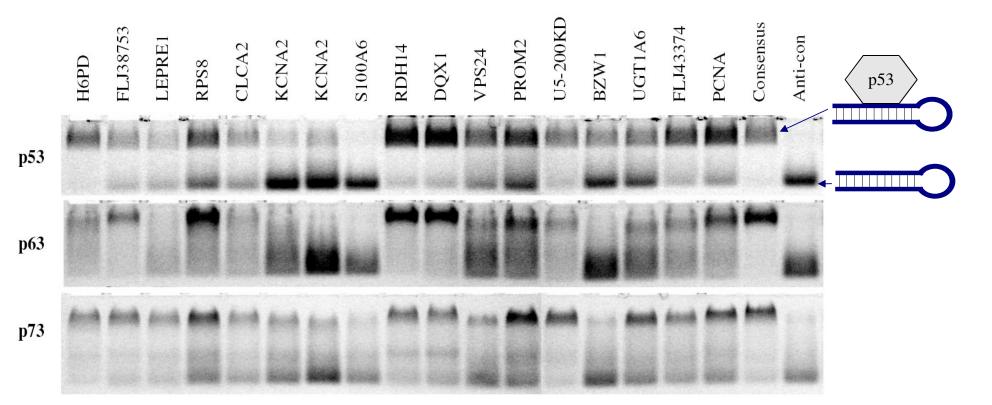
Ilya Lyakhov , PhD

Center for Cancer Research Nanobiology Program Molecular Information Theory Group NCI-Frederick



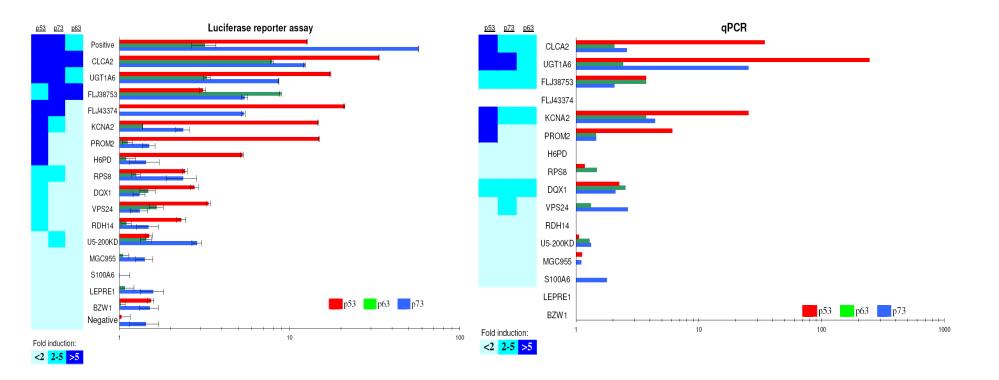
#### **Decameric and Flexible p53 models**




••••••• 222209876543210 222209876543210

#### Scanning of human chromosome 1 and 2 with the flexible p53 model

- Average information content of the flexible p53 model is 12.3+/-3.1 bits.
- 50% of the calculated distances between a p53 RE and a promoter are less that 300 bp
- Range: -300 to +100 from identified promoters on human chromosomes 1 and 2
- Rs cutoff for the flexible model is 12 bits
- Rs cutoff for the decameric model is 5 bits


Calcium-activated ion channel protein (CLCA2) UDP glycosyltransferase (UGT1A6) Hypothetical protein (FLJ38753) Hypothetical protein (FLJ43374) Potassium channel protein (KCNA2) Prominin 2 (PROM2) Hexose-6-phosphate dehydrogenase (H6PD) Ribosomal protein S8 (RPS8) DEAQ box polypeptide 1 (RNA-dependent ATPase) (DQX1) Transmembrane protein sorting (VPS24) Retinol dehydrogenase (RDH14) U5 snRNP-specific protein, RNA helicase (U5-200KD) Hypothetical protein (MGC955) S100 calcium binding protein A6 (calcyclin) (S100A6) Proteoglycan, potential growth suppressor (LEPRE1) Basic leucine zipper protein (BZW1)

## Confirmation of predicted p53REs by Electromobility Shift Assay (EMSA)



Electrophoretic mobility shift assays (EMSA) with hairpin oligonucleotides containing predicted p53 binding sites using the p53, p63 and p73 proteins.

## Confirmation of predicted p53REs in human cell culture



Transcriptional regulation of genes containing the predicted binding sites by p53, p63 and p73.

## Conclusions

#### The flexible p53 binding model was created.

Human chromosomes 1 and 2 were scanned and 16 p53REs were predicted. The predicted sites were confirmed by EMSA, reporter assays and qPCR

#### 94% (15/16) of the predicted sites showed activity

94% (15/16) bind p53 in vitro 75% (12/16) bind p63 in vitro 81% (13/16) bind p73 in vitro

Luciferase reporter assay: 12 are activated by p53, p63 or p73 more than 2 fold 7 are activated by p53, p63 or p73 more than 5 fold

<u>qPCR:</u>

7 are activated by p53, p63 or p73 more than 2 fold 4 are activated by p53, p63 or p73 more than 5 fold

Annangarachari Krishnamachari:

Bioinformatics Centre, Jawaharlal Nehru University, New Delhi -110067 India

Thomas D. Schneider:

Center for Cancer Research Nanobiology Program, NCI at Frederick