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My research uses classical information theory to study genetic systems. Information theory, founded by Claude
Shannon in the 1940’s, has had an enormous impact on communications engineering and computer sciences.
Shannon found a way to measure information. We use this measure to precisely characterize the sequence
conservation at nucleic-acid binding sites. The resultingmethods completely replace the use of “consensus se-
quences”, and therefore provide better models for molecular biologists. An excess of sequence conservation at
bacteriophage T7 promoters and at F plasmid IncD repeats ledus to predict the existence of proteins that bind
the DNA. In another application of information theory, the wonderful fidelity of telephone communications and
compact disk (CD) music can be traced directly to Shannon’s channel capacity theorem. When rederived for
molecular biology, this theorem explains the surprising precision of many molecular events. Through connec-
tions with the Second Law of Thermodynamics and Maxwell’s Demon, this approach also has implications for
the development of technology at the molecular level.

The theory of molecular machines describes molecular in-
teractions by using the mathematics of information theory
[1, 2]. For convenience, I have divided the theory into three
levels, which are characterized by these topics:

• Level 0. Sequence Logos: patterns in genetic sequences.

• Level 1. Machine Capacity: energetics of macro-
molecules.

• Level 2. The Second Law: Maxwell’s Demon and the
limits of computers.

This paper is a brief guide to papers presented elsewhere. See
ftp://ftp.ncifcrf.gov/pub/delila/cover.ps for a list ofreferences
and http://www-lmmb.ncifcrf.gov/∼toms/paper/nano2[3] for a
review. Other information is available on the world wide web
at http://www-lmmb.ncifcrf.gov/∼toms/. Discussions of these
topics are held on the internet newsgroup bionet.info-theory.

1 Level 0. Sequence Logos: patterns in
genetic sequences.

Genetic expression is usually controlled by proteins and
other macromolecules (“recognizers”) that bind to specificse-
quences on DNA or RNA. Molecular biologists often charac-
terize these sequences by a “consensus sequence” in which the
most frequent base is chosen for every position of the binding
site. Because the frequency information is lost, this method
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destroys subtle patterns in the data. How can we model bind-
ing sites without losing data? Fig. 1 shows the DNA sequences
that the cI and cro proteins from bacteriophageλ bind to. Be-
low these is shown a “sequence logo” [5]. Consider position
−7 in the sequences. This is always an A in each of the 12
binding sites, so it is represented as a tall A in the logo. Po-
sition −8 has mostly T’s, 2 C’s and an A; this is represented
in the logo as a stack of letters. The height of each letter is
drawn proportional to its frequency and the letters are sorted
so that the most frequent one is on top. The entire height of the
stack is the sequence conservation at that position, measured in
bits of information. A “bit” is the choice between two equally
likely possibilities. There are 4 bases in DNA, and these can
be arranged in a square:

A C

G T

To pick one of the 4 it suffices to answer only two yes-no ques-
tions: “is it on top?” and “is it on the left?”. Thus the scale for
the sequence logo runs from 0 to 2 bits. When the frequen-
cies of the bases are not exactly 0, 50 or 100 percent, a more
sophisticated calculation must be made. The uncertainty isa
function of the frequencyf (b, l) of each baseb at positionl:

H(L) = −
T
∑

b=A

f (b, l) log2 f (b, l)+ e(n(l)) (1)

wheree(n(l)) is a correction for the small sample sizen at po-
sition l. The information content (or sequence conservation) is
then:

Rsequence(L) = 2−H(L). (2)

The reasoning behind this formula is described in a primer on
information theory that can be obtained from
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    --------- +++++++++
    9876543210123456789
    ...................
  1 GTATCACCGCCAGTGGTAT
  2 ATACCACTGGCGGTGATAC
  3 TCAACACCGCCAGAGATAA
  4 TTATCTCTGGCGGTGTTGA
  5 TTATCACCGCAGATGGTTA
  6 TAACCATCTGCGGTGATAA
  7 CTATCACCGCAAGGGATAA
  8 TTATCCCTTGCGGTGATAG
  9 CTAACACCGTGCGTGTTGA
 10 TCAACACGCACGGTGTTAG
 11 TTACCTCTGGCGGTGATAA
 12 TTATCACCGCCAGAGGTAA

12 Lambda cI and cro binding sites
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Figure 1: Example of 12 DNA sequences and their corresponding
sequence logo.
There are 6 binding sites, and both proteins are dimers so both

the sequence (odd rows) and its complementary sequence
(even rows) were used for the analysis. This makes the

resulting logo have more data at each position and it also
makes the logo symmetrical. Error bars show the expected

variation of the stack heights. The cosine wave represents the
major (crest) and minor (trough) grooves of DNA facing the

protein. This can be used to predict the face of the DNA
bound by the protein [4].

ftp://ftp.ncifcrf.gov/pub/delila/primer.ps or http://www-
lmmb.ncifcrf.gov/∼toms/paper/primer

The sequence logo shows not only the original frequencies
of the bases, but also shows the conservation at each position in
the binding sites. Because it is a graphic, one can immediately
see the pattern at the binding sites. In contrast to the sequence
logo, one can be fooled by the distortions of a consensus se-
quence in which, for example, one cannot distinguish 100% A
from 75% A.

An important reason that we measure the sequence conser-
vation using bits of information is that bits are additive. One
can get the total sequence conservation in the binding site sim-
ply by adding together the heights of the sequence logo stacks:

Rsequence =

∑

l

Rsequence(L). (3)

This single number alone does not teach us anything, so we
use an entirely different perspective to approach the problem of
how a recognizer finds its binding sites. The recognizer must
select the binding sites from all possible sequences in the ge-
netic material, so we can calculate how many bits of choices
it makes by determining the size of the genetic materialG and
the number of binding sitesγ. Before the sites have been lo-
cated, the initial number of bits of choice is log2G, while after
the set of sites have been found there remain log2γ choices that
have not been made. So the decrease in uncertainty measures
the number of choices made:

log2G− log2γ = log2
G
γ
= − log2

γ

G
= R f requency. (4)

The nameR f requency was chosen becauseγG is the frequency of
the sites. This number is often close to the value ofRsequence,
which means that the information content in binding site pat-
terns is just sufficient for the sites to be found in the genome
[6].
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Figure 2: Sequence logos for T7 promoters.
The vertical bars are 2 bits high. Transcription starts at base 0
and proceeds to the right.

Pattern at T7 RNA polymerase binding sites
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Matt Yarus suggested a simple analogy that makes this clear.
If we have a town with 1000 houses, how many digits must we
put on each house to be sure the mail is delivered correctly?
The answer is 3 digits since the houses can be numbered 000
through 999. So there is a relationship between the size of
the town (size of genetic material and number of sites) and the
digits on the mail box (pattern at the binding sites).

A surprising exception appears in the case of bacterio-
phage T7 promoters (Fig. 2 top), whereRsequence = 35.4±2.0
bits per site butR f requency = 16.5 bits per site. There is a
Rsequence/R f requency = 2.1± 0.1 fold excess of sequence con-
servation. Either the theory is wrong or we are learning some-
thing new. In the town analogy, there are 1000 houses, but
each house has 6 digits on it. One explanation is that there are
two independent mail delivery systems that could not agree on
a common address system. The biological explanation is that
there are two proteins binding at these patterns.1 We already
know about one of them, it is the T7 RNA polymerase. To
test this idea, a large number of random DNA sequences were
constructed and then ones which still functioned as T7 promot-
ers were selected [7]. If there is another protein, then it would
not be binding in this test and so the excess information would
disappear. This is indeed what happened (Fig. 2 bottom): the
binding sites for T7 promoters alone only have 18± 2 bits of
information, close to the predicted value ofR f requency = 16.5
bits per site. The hypothesis that there is a second protein was
upheld, but to date we have not identified it experimentally.

Later on we discovered another case in the F plasmidincD
region whereRsequence = 60.2±2.6 bits per site andR f requency =

19.6 bits per site so that there is aRsequence/R f requency = 3.07±
0.13 fold excess of sequence conservation. Three proteins have
been seen to bind to this DNA, and we were able to tentatively
identify them [8].

2 Level 1. Machine Capacity: energet-
ics of macromolecules.

The results described above indicate that we can successfully
apply ideas from information theory to molecular interactions.
This suggests that other concepts from information theory
should also apply. An important concept is that of the chan-
nel capacity. A given communications channel, such as a radio
signal, will operate over a certain range of frequenciesW and
the signal will dissipate some powerP into the receiver. The
receiver must distinguish the signal from thermal noiseN it is
also receiving. Shannon found that these factors alone define

1The question comes up as to why the information content for the two
λ proteins of Fig. 1 do not give rise to a ratio of 2. The reason isthat cI
and cro bind to the same location in competition, so they share information.
Presumably the two proteins that bind at T7 promoters do so simultaneously
and do not use the same molecular contacts.

the highest rate of information that can pass across the channel:

C =W log2

( P
N
+1
)

(bits per second). (5)

He also proved a remarkable theorem about the channel ca-
pacity [9]. If the rate of communicationR is greater than the
capacity, at mostC bits per second will get through. On the
other hand ifR ≤C, the error rate may be made as small as de-
siredbut not zero. The way to do this is to encode the signal to
protect it from noise so that when the signal is decoded, errors
can be corrected. Coding is used in compact disks to correct up
to 4000 simultaneous bit errors [10], which is why CD music
is so clear.

The corresponding ideas can be constructed for molecular
interactions in which a molecule (“molecular machine”) makes
choices from among several possibilities [11, 3]. The corre-
sponding statement of the theorem is that so long as the molec-
ular machine does not exceed the machine capacity, the molec-
ular interactions can have as few errors as necessary for sur-
vival of the organism. Of course statements cannot be about
“desires” in molecular biology, so the theorem is related tothe
evolution of the system. This mathematical result explainsthe
observed precision of genetic control systems.

3 Level 2. The Second Law: Maxwell’s
Demon and the limits of computers

The Second Law of Thermodynamics can be expressed by the
equation:

dS ≥
dQ
T
. (6)

(See ftp://ftp.ncifcrf.gov/pub/delila/secondlaw.ps or
http://www-lmmb.ncifcrf.gov/∼toms/paper/secondlaw for
discussion of this equation.) The equation states that for
a given amount of heatdQ entering a volume at some
temperatureT , the entropy will increasedS at least bydQ

T .
We can relate entropy to the Shannon uncertainty if the prob-

abilities describing the system states are the same for both
functions, as is the case for molecular machines [12, 3]. This
connection and the constant temperature at which molecular
machines operate at allow us to rewrite the Second Law in the
following form:

Emin = kBT ln(2)≤
−q
R

(joules per bit), (7)

wherekB is Boltzmann’s constant. This indicates that there is
a relationship between the informationR and the heatq. Re-
markably, this same limit can be determined from the channel
capacity (equation (5)) and the machine capacity. This was
originally recognized by Felker in 1952 [13, 14, 15]. The in-
terpretation of this equation is straightforward—there isa min-
imum amount of heat energy that must be dissipated (negative
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q) by a molecular machine in order for it to gainR = 1 bit of
information.

Maxwell’s Demon is a mythical creature who is supposedly
able to open and close a tiny door between two containers of
gas [16, 17]. By observing the molecules that approach the
door and by controlling the opening appropriately, the demon
can allow the fast molecules through to one side and the slow
ones to the other. Although any molecular biologist would ex-
pect the muscles and eyes of the demon to use energy, this is
neglected by physicists. Also, they presume that the energy
used to open the door can be regained when it is shut if it is
attached to a spring. Such a demon could presumably create a
macroscopic temperature difference between the two contain-
ers, and this could be used to run a heat engine. Apparently,
the demon can supply energy merely by choosing between two
alternatives. This would violate the Second Law of Thermo-
dynamics.

Equation (7) applies to this problem. The demon always se-
lects molecules in every scenario that he appears. We become
duped by the story because the selective process is not explic-
itly stated as invoking the Second Law. But the Second Law
always requires dissipation of heat energy to counterbalance
selections made. Thus the demon is no longer a puzzle.

Equation (7) also applies both to molecular machines and to
computers, so it sets a limit on computation. It is impossible to
get temperatures of absolute zero because that would require
infinite energy to remove all the heat energy. At any temper-
ature above absolute zero, a computer must dissipate energy
to make choices. As this energy must come from somewhere,
we must feed the computer energy so that the computer can
dissipate the energy while calculating our answers.

I thank Denise Rubens, Elaine Bucheimer and Paul N. Hen-
gen for comments on the manuscript.
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