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Although information theory was developed more than 50 years ago (Shannon, 1948;
Shannon, 1949), it is widely accepted (Gappmair, 1999), and a complete compendium of
Claude Shannon’s works was recently published (Sloane & Wyner, 1993). The application
of information theory to understanding binding sites of proteins on DNA or RNA was
published more than 10 years ago (Schneider et al., 1986), and since then it has been
profitably used to study many genetic systems (see http://www.lecb.nciferf.gov/ toms/ ).
Shannon measured information as an average property of signals passing through a
communications channel, so a natural extension is to understand the information
contributed by individual symbols. The same extension can be applied to the study of
binding sites as an “individual information theory” (Schneider, 1997a; Schneider, 1997b)
and this has also been successfully used to understand a variety of genetic and medically
relevant systems (Hengen et al., 1997; Rogan et al., 1998; Allikmets et al., 1998; Kahn
et al., 1998; Shultzaberger & Schneider, 1999; Zheng et al., 1999). Dr. Stormo subsequently

published a letter in this journal promoting an alternative to the Shannon approach and
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pointing out some consequences of that choice (Stormo, 1998). In this letter T will address
other consequences and interpretations of the two approaches. However, before addressing
the deep and difficult issues that Dr. Stormo has raised, which we have been discussing for
more than 15 years, I would like to make some small factual corrections.

First, the Staden method (Staden, 1984) is discussed in my J. Theor. Biol.
paper (Schneider, 1997a). Staden’s method has no cutoff, while the individual information
(R;) method has a natural one and although they are similar, no one derived the R;
formula from Staden’s approach. I did not derive the R; method from Staden; it is a
natural extension of information theory inspired by Tribus (Tribus, 1961). The connection
between the information contributed by individual binding sites (as represented by the
sequence walker computer graphics (Schneider, 1997b)) and their ensemble average (as
represented by the sequence logo computer graphics (Schneider & Stephens, 1990)) is not
obvious from the Staden approach, nor is the relationship to energy (Schneider, 19915).

Second, in his letter (Stormo, 1998) Dr. Stormo implied that T “claim an inequality
relationship with the enthalpy of binding”. My papers do not claim any relationship with
enthalpy; indeed I have not published the word “enthalpy” before now. While it is possible
for ¢ in the Second Law dS > dq/T to refer to enthalpy (the increase in entropy of the
surroundings of a system), the more appropriate measure for molecular machines is the
total dissipation, and this corresponds to the free energy. (In this letter T use the terms
energy and free energy synonymously.) At this point it would appear that we finally agree,

but information is not energy as will be discussed in section II below.



I. What Does Dr. Stormo’s /;.,, Measure?

1. I, is not a state function. I, is a relative entropy that is not a distance
measure because it is asymmetric and does not follow the triangle inequality (Cover &
Thomas, 1991). So why isn’t I, a state function? The previous argument used a simple 3
state case (Schneider, 1991b). A more general argument is to consider a series of N states
that form a closed loop. Let N — 1 of the steps between these states be made

independently so that
N-1
> I, >0 (1)
k=1

since “information” is (supposedly) additive for each independent event, and each step gives

a zero or positive value. Irrespective of whether or not the last step is independent, Iy > 0

because the function is nonnegative. Therefore the sum around a loop is nonnegative:

ij:]k >0, 2)

The only condition where > I, = 0 is where no step had a change. By making many
excursions to different composition regions of the genome, a recognizer would gain an
arbitrarily large (and variable) information by Dr. Stormo’s measure. In contrast, free
energy and entropy are state functions (i.e., functions of the current state of a system and
not its history) and so their integration around a closed loop is always zero and prior
history can be ignored. I, therefore cannot be used to compute energy as Dr. Stormo

claims.



2. I4, is not an information theory measure. Shannon’s uncertainty
H=-Y Pjlog, P, (bits per symbol) (3)

is related to the physical entropy if the probabilities correspond to the microstates of the
system, so that S = kgln2H (Schneider, 1991b). (H is often incorrectly called an entropy:;
see Tribus & MclIrvine, 1971, for an amusing story about why.)

The theory I work with differs from that of Dr. Stormo in that it uses a definition of
information that is path independent. A molecular machine  including not only genetic
recognizers but also rhodopsin, myosin, etc. dissipates energy into its surroundings as it
makes choices (Schneider, 1991a). The information R (a rate of information, following

Shannon’s original notation) is a decrease in uncertainty:
R = Hpefore — Haprer = —AH  (bits per operation). (4)

For protein binding on a nucleic acid, the before state is the recognizer unbound or
nonspecifically bound and the after state is it being specifically bound (Schneider, 1994).
By using the state function H, the measure R is path independent. As a direct
consequence Shannon’s information can be compared to the measured energy change of
such processes because energy changes are also path independent.

The formula ascribed to by Dr. Stormo is

L) = 3 F(0.1)log, %

= (Eb:f(b, 0) 10g2p(b)> - (Zf(b» ) log, f(b, U) : (5)

b



where supposedly p(b) is the probability of base b in the genome, and f(b,[) is the
frequency of base b at a position [ in a binding site. Writing I, in the second form shows
that it is a difference, but not of state functions since the first part mixes two states: p(b)
represents the unbound state and f(b,[) represents the bound state.

Note that R can be computed from the genomic uncertainty

Hbefore = ngnomic = Hg = - Zp(b) 10g2 p(b) (6)
b

in which case, contrary to Dr. Stormo’s claim, it does cancel the ‘background’: the
information of regions outside a binding site will fluctuate around zero in a sequence

logo (Schneider et al., 1986; Schneider & Stephens, 1990). Therefore equation (6) can
account for skewed genome composition. However, this may be fundamentally incorrect as
there is no physical contact between the recognizer and the nucleic acid bases in this state.

In other words there are three possible formulas:

Hbefore = 2 (7)
Hbefore - Hq (8)
“Hbefore” = - Z f(b: l) logZ p(b) (9)

b
Formula (7) would be the strict molecular machine view in which contact is not made
before binding (Schneider, 1991a; Schneider, 1994), so that the uncertainty is log, 4 = 2
bits. This raises the issue of how it is known to be 4 bases. However, the situation is
equivalent to determining the channel capacity and therefore follows Shannon in that sense.

Modification of bases, for example by methylation or glycosylation, does not increase the



information capacity of DNA beyond 2 bits per base since the modifications depend on the
sequence itself, for example in the methylation of adenine by Dam methylase at 5 GATC
3'. However, increasing the number of symbols everywhere by adding new bases would
increase the information, as has been done experimentally (Piccirilli et al., 1990).

In formula (8) H, can be used to cancel the ‘background’ around a binding site due
to genomic composition skew (Schneider et al., 1986), but this is dangerous because we
don’t know what causes the skew. For example, it could be caused by a nucleosome
binding pattern everywhere in the genome and therefore real information is there. This
leaves us with the difficult or unresolvable technical problem to separate and identify the
information of other binding sites in such genomes. A similar difficult situation is to use
purely theoretical means to distinguish ribosome binding site patterns from the
downstream codon biases that occur with 3 base repetition. Aside from the toeprint
experiment (Hartz et al., 1988) one doesn’t know exactly where the 3" edge of the ribosome
is (Rudd & Schneider, 1992), and it is not clear that complicated subtraction or extraction
schemes would provide fair models close to the initiation codon since translation or protein
chains may be different when they are just starting as compared to later on. Experimental
approaches to determine the patterns, such as SELEX, are also presently
inadequate (Schneider, 1996; Shultzaberger & Schneider, 1999).

Formula (9) is not a true Shannon uncertainty of the form — 3 plogp, and is not a
state function.

Thus formulas (7) or (8) appear reasonable but (9) is not and does not match the



physics discussed in Section II.

3. I, can violate the channel capacity theorem. Shannon’s channel capacity
theorem provides an upper bound on the information that can be transmitted (Shannon,
1948; Shannon, 1949). Tt has been used to explain the observed precision of molecular
systems (Schneider, 1991a; Schneider, 1994). Because I, can give indefinitely large values,
it could be used to transmit more information than the channel capacity of a
communications system, in violation of the theorem. Dr. Stormo gives an example where
more than 2 “bits” per base are obtained from the string GGGG even though it never
takes more than 2 bits to choose one object in four.

When discussing the computation for GGGG, Dr. Stormo does not give a
justification for having more than 2 bits/base other than having Rgequence (the average
information at a set of binding sites) equal Rfyequency (the information needed to locate the
binding sites on the genome). There are now a number of clear cases where Rgequence does
not equal R yequency for good biological reasons (Schneider et al., 1986; Schneider &
Stormo, 1989; Herman & Schneider, 1992; Rudd & Schneider, 1992; Stephens & Schneider,
1992), so forcing one’s formula to make them equal means that one could miss important
biological phenomena.

4. Interpreting I,., as a macroscopic measure made by an observer. I
understand that it is not Dr. Stormo’s intent to model the observational process, but it is
worthwhile understanding the implications of this possible interpretation. Formulas like

Ieq directly compare two probability distributions, and because they always have positive



values they can be interpreted as measuring the state change of an observer who doesn’t
forget. If this is the case, then they are not an appropriate measure for single molecules,
which do forget where, or even whether, they were previously bound.

5. I, can measure prejudice. /,-like functions may be a way of measuring
prejudice of an observer. They will give an indefinitely large response when some initial
probabilities are small but later turn out to be large (f(b,1) > p(b) in equation 5). That is,
the more prejudiced the observer is, the more surprised they can be. This has a curious
consequence. If there are 2 possible initial states and an observer believes that one of them
is highly likely, then when the states change later the observer can gain more than 1 “bit”
of information, even though a 2 state system cannot contain more than 1 bit of information
since it takes only log, 2 = 1 yes-no question to completely identify one of the two items.
The more prejudiced the person is about the initial state, the more that they ‘learn’, and
they somehow learn more than it is possible to know! This violation of the channel
capacity shows that it is not appropriate to assign the units “bits” to this measure.

6. I,, as a global free energy measure. Dr. Stormo (private communication)
indicates that I, is intended to “compare two different situations, the protein occurring
equally at all possible positions and its equilibrium distribution.” In other words, Dr.
Stormo proposes it as a measure of the macroscopic binding reaction. By this
interpretation, /., does not measure the state change of a single molecule, so it cannot be
used to determine the average energy change a single molecule experiences in the transition

between being non-specifically bound to the genome and being bound at the binding sites.



The choices made by a single protein cannot be sensitive to the macroscopic chemical
equilibrium. For example, the local binding interaction between a single EcoRI molecule
and the base A cannot be sensitive to the number of A molecules elsewhere on a DNA. The

EcoRI molecule can only react with the bases it is close to.

I1. What is the inequality that Dr. Stormo disputes?
The inequality is a version of the Second Law of Thermodynamics, given in a
previous J. Theor. Biol. paper (Schneider, 19915). The relationship derived from both the

Second Law and (surprisingly!) from Shannon’s channel capacity equation is:
Emin = kgTIn2 < % (joules per bit) (10)

where kp is Boltzmann’s constant, 7" is the absolute temperature and In 2 is a constant
that gives units of bits. Positive ¢ is defined as heat put into the system. The formula
shows that to gain one bit of information (set R = 1) at least kg7 In2 joules must be
dissipated (—q) to the surroundings. The Second Law forbids a smaller amount but allows
a larger amount.

A coin is a useful example for understanding this. A coin can carry one bit of
information, since it has 2 states and log,(2) = 1 bit. Consider a coin flipping in the air or
bouncing around in a box. In such a condition it has no particular state and so its
uncertainty is 1 bit. To ‘store’ information in the coin, it must come to rest on one or the
other face. This requires that the energy in the coin be allowed to flow out to the
surrounding environment. The point here is that the initial energy of the coin can have

different values relative to the final value. The Second Law tells us that there is a



minimum energy that must be dissipated per bit (kg7 In2 joules), but there can be extra
dissipation that is merely wasted because under all conditions no more than 1 bit can be
stored in the coin. With even a small inefficiency, the relationship between energy
dissipated and information gained will be an inequality, contrary to Dr. Stormo’s claim
(see Tribus & Mclrvine, 1971).

A coin is also a good analogy for the situation of a protein binding to DNA. Before
specific binding, the protein/DNA complex has high energy, while after binding at specific
DNA sites it has lower energy. The excess energy must be dissipated to the surroundings
for the molecule to stick, since if the energy were not dissipated the molecule would move
on. As with the coin, there can be an excess dissipation so there is no a priori relationship
between energy and information aside from the Second Law bound.

If, in attempting to model binding energetics, p(b) and f(b,[) are to represent the
time-average of various bases bound by the protein, then the non-equivalence of energy and
information means that it is not correct to assume that these are the same as the base
frequencies observed in the genome and in binding sites, respectively, since those
correspond to information. In this case, these probabilities are not yet experimentally
accessible and the measure Dr. Stormo proposes cannot be made.

On the other hand, these probabilities are usually presented as estimatable from
observed base frequencies, in which case Dr. Stormo is working entirely on the information
side of the energy/information equation (10) to compute his “specific free energy of

binding”. In this interpretation, I, cannot be a measure of energy. Because of the Second

10



Law inequality, the only way to know what the real energy is, is to go and make direct

measurements of it.
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