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Introduction

Claude Shannon died on 24 February 2001 of the
after-effects of Alzheimer disease. With him, one of
the greatest scientific minds of the century, and even
of all times, disappears. His work exercised a deep
influence, although often misknown, in the commu-
nication techniques hence in the world where we are
living, as well as in the thoughts of the XXe cen-
tury. I shall try, after having evoked the carrier and
work of Shannon, to show in what his approach was
extraordinarily innovative and also, which is more
risky, to bring out promises for the future that this
work contains. The use I make of the first person
should be understood as intended to claim a de-
liberate subjectivity. I do not indeed pretend to
evoke all facets of Shannon’s genius but only those
which my experience and my reflection enabled me,
I hope, to grasp. Beyond the anecdotes and pic-
turesque details I chose mainly to evoke the creator
of information theory.

Shannon’s papers were collected by N.J.A. Sloane
and A.D. Wyner [1]. For convenience, I shall cite
Shannon’s works by reference to this collection. My
main source of historic information, except for the
few biographic data contained in [1], is the excellent
and monumental doctoral thesis of Jérôme Ségal [2].

His life

Claude Elwood Shannon was born on 30 April 1916
in Petoskey, Michigan, the United States. His fa-
ther, businessman and for a time Judge of Pro-
bate, was a descendant of early New Jersey settlers;
his mother, a daughter of German immigrants, was
a language teacher and Principal of Gaylord High
School in Gaylord, Michigan, where he spent all
his childhood. He then admires Edison, a distant
cousin of the family, and exhibits ingenuity in tin-
kering and inventions in mechanics, electricity and
radioelectricity. He leaves Gaylord High School in
1932 and enters Michigan University at Ann Arbor.

He obtains in 1936 the degree of Bachelor of Science
in Electrical Engineering and Bachelor of Science in
Mathematics. He then becomes a research assistant
in the Department of Electrical Engineering at the
Massachusetts Institute of Technology (MIT) near
Boston, a part-time position which enables him to
continue studying. His master’s thesis is devoted
to the application of Boolean algebra to relay and
switching circuits. It is published in 1938, meets a
very great success and is awarded in 1940 the Al-
fred D. Nobel prize, an award given each year in the
United States to an engineer less than 30 (do not
confuse . . . ).

In 1938, he leaves the Department of Electrical
Engineering for the Department of Mathematics, at
instigation of the vice-chairman of MIT Vannevar
Bush (who will become during and after the war a
consultant to President Franklin Roosevelt). Bush
was an engineer of visionary imagination who in-
vented machines predating the computer but failed
by the technology of the time. He was just named
as chairman of the Carnegie Institution in Washing-
ton, a branch of which was studying genetics (and
eugenics, which will be discredited only after the
war has revealed the monstrous usage made of it).
With Shannon’s memoir, the design of switching
circuits passed from the status of an art to that
of a science, thanks to a mathematical formulation
of the problem, and Bush hoped that a similar ap-
proach by the same Shannon would be fecund to
genetics. Back to MIT after a stay at the genet-
ics laboratory of the Carnegie Institution at Cold
Spring Harbor, Shannon wrote, under the supervi-
sion of the algebraist Frank L. Hitchcock, his thesis
entitled ‘An algebra for theoretical genetics’. Inci-
dentally, Shannon’s work was examined by Barbara
Burks, a psychologist expert in the ‘genetics of ge-
niuses’ member of the American Eugenics Society.
Her diagnosis was devoid of ambiguity: the young
Shannon is a genius she compares, in a letter to
Bush in 1939, with Pascal re-inventing Euclid’s ge-
ometry at the age of 12 [2].
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Shannon obtains his Ph.D. degree in the Spring
of 1940. He spends the summer of the same year
at the Bell Telephone Laboratories (Bell Labs) in
successfully applying the method of his 1938 mem-
oir to simplifying switching circuits (an important
stake in the design of telephonic exchanges). Af-
ter he worked during the academic year 1940–1941
at the Institute for Advanced Studies in Princeton,
under the supervision of Hermann Weyl, he comes
back to the Bell Labs in 1941, called to integrate
a research team (the main members of which were
H.S. Black and H.W. Bode) working on anti-aircraft
defence systems: a pressing problem in this war
time. The works of this team eventually resulted in
perfecting and manufacturing the fire control sys-
tem M6 which enabled England to limit the dam-
age due to the German missiles V1 and V2, and
helped the Allies to get the mastering of the airs,
a decisive step towards their victory. The war con-
text is the reason why Shannon worked also as a
consultant in cryptography to the National Defense
Research Committee (NDRC), created even before
the United States entered the war and chaired by
Vannevar Bush. For this reason, he had the oppor-
tunity to meet several times Alan Turing. It seems
that cryptography has been for Shannon a source of
inspiration but also mainly a mask, honourable in
war time, for the studies he already undertook on
communication theory and information: they did
not contribute to the war effort and their possible
usefulness could not be justified but a posteriori [2].

Bell Labs were a very fecund assembly of re-
searchers and engineers in all domains of physics
and mathematics. Information theory (and many
other works by Shannon, the main ones to be found
in [1]) are not the least production of Bell Labs. The
invention of the transistor is another one, mirac-
ulously complementary to information theory, to
which it provided, as well as to computer technique,
implementation means which badly lacked in 1948.
Shannon remained 15 years at Bell Labs which he
left only to get teaching at the MIT.

Reliable witnesses met Shannon in the corridors
of Bell Labs riding a unicycle and juggling (with
three balls, he said). Beyond the anecdote, this at-
tests the immoderate taste for playing which was
characteristic of Shannon’s personality, his interest
to precarious equilibria and, of course, a noncon-
formism he dared display. Maybe it was a para-
doxical means to protect himself from inquisitive
people: Shannon did not open up easily and lived
retired. For instance he used to get rid of the jour-
nalists who tried to interview him by letting them
visit his collection of ‘toys’.

Shannon indeed loved play, all plays. Gambling,
chess, music (he played clarinet and collected in-
struments of all kind) and, maybe still more, the
sophisticated toys he constructed himself. His deep
interest in roulette made him undesirable in casinos.
Should we consider financial investments as gam-
bling? Shannon was successful here to the point of
making a fortune, which enabled him no longer to
financially depend on the Bell Labs. He was an ex-
cellent chess player (during a trip in USSR, in 1965,
he brilliantly resisted the world champion Mikhail
Botvinnik, just missing the draw), which naturally
led him to get interested in chess playing machines.
His 1950 paper “Programming a computer for play-
ing chess” [1, pp. 637–656] made him a pionneer in
this field.

This theoretician of genius was also a great
handyman, constructing himself play machines,
very diverse gadgets having only in common their
almost surrealistic gratuitousness. Here are a few:
computing machine entirely operating in Roman
numerals, mind-reading machine, cybernetic turtles
and mice learning to direct themselves in a maze,
cycles with eccentric wheels, cycling and juggling
robots, . . . The ‘ultimate machine’ alone deserves
to be described: it is a coffin-shaped box with a
switch on one face. If turned on, an angry buzz
rings out, the lid slowly rises, a hand emerges from
beneath and turns off the switch, thus ending what
may hardly be called the machines’s activity!

Let us go back to Shannon’s career. Invited pro-
fessor at MIT in 1956, he became there a permanent
teacher in 1959, supervising doctoral dissertations
of researchers many of them made a brilliant car-
rier in information theory and coding. He formally
remained at MIT until 1978, but with a progres-
sively reduced activity. He then retired in a large
house near a lake at Winchester (Massachusetts),
where he could devote himself to his favourite pas-
times. His last papers in the field of information
theory and coding were published in 1967, cosigned
by R.G. Gallager et E.R. Berlekamp [1, pp. 385–
423, 424–454]. One of his last papers published un-
der his sole name, in 1959, “Probability of error for
optimal codes in a Gaussian channel”, besides being
outstanding, maybe contains a key as regards Shan-
non’s behaviour with respect to information theory.
It contains several times a word which is unusual
in scientific literature: ‘tedious’. Shannon actually
had to make lengthy and non-fascinating calcula-
tions so as to obtain bounds on error probabilities
(with the help of his wife Betty he explicitly ac-
knowledges), in contrast with the exaltation which
he obviously felt with the discoveries of the begin-
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nings. There is no doubt that the fear of boredom
was a major motivation of this passionate lover of
plays.

I feel nevertheless an impression of mystery as re-
gards the behaviour of this man in front of the con-
tinuation of the researches stemming from his own
work, which reminds Moses gazing at the Promised
Land without entering it. His famous theorem of
channel coding stated the existence of codes mak-
ing the error probability arbitrarily small provided
the source entropy is less than the channel capacity,
a result the proof of which relied on an extraordi-
nary process which left no hope of an actual imple-
mentation: random coding, probably inspired by
cryptology and maybe also by Darwin. Why did
not Shannon contribute to the search for explicitly
defined coding means, as opposed to random, al-
though efficient according to the criteria of informa-
tion theory? His coauthors of the aforementioned
papers, Gallager and Berlekamp, have both been
eminent actors of this search which was to look like
the Holy Grail quest (and still continues nowadays,
although it enjoyed a decisive progress with the in-
vention of turbo codes in 1993 [3, 4]; truly, the way
which led to this invention was sinuous and far from
the initial directions of this research). Was it the
awareness that many efforts had still to be made,
that this work could only be a collective, slow and
rather boring task? Maybe, too, the reluctance of
Shannon to any utilitarian finality, as illustrated by
the gratuitousness of the ‘toys’ he constructed?

His work: information theory

I shall restrict myself to information theory, gen-
erally considered as Shannon’s main contribution.
His contributions to other fields are however by no
means ignorable, but I do not feel competent to deal
with them. Moreover, I do not wish to depart from
what I believe the essentials.

It happens that a science originates from a found-
ing text so obscure that it needs the work of many
exegetes before it is eventually understood, and
then years and efforts in order to exploit the ideas it
contains only in germ. Far from being so, Shannon’s
seminal text (“A mathematical theory of communi-
cation”, [1, pp. 5–83], issued in July and October
1948 in the prestigious journal of Bell Labs, the
Bell System Technical Journal) looks like a popu-
larization work. Not only did he discuss with great
clarity the premises of this new science, but he de-
veloped it so coherently and so completely that he
left little to find to his successors. The great ease
of his discussion was not devoid of casualness in the

mathematical treatment. This way of introducing
a new science was disliked by some keepers of the
mathematical orthodoxy, especially in the United
States. Greater mathematicians, but in the Soviet
Union, became enthousiastic of this emerging sci-
ence despite the cold war. Thus, Khintchin under-
took more rigourously proving Shannon’s theorems
[5]. Kolmogorov, who made no mystery of his admi-
ration for Shannon, later introduced using the con-
cept of ‘algorithmic complexity’ a variant of infor-
mation theory which was more complementary than
competing with Shannon’s [6, 7]: instead of letting
the measure of information depend on probability
distributions assumed to be known, Kolmogorov in-
troduces information as a basic concept, freeing it
from that of probability the philosophical bases of
which are rather weak. Its practical usefulness,
however, is restricted since the quantities of Kol-
mogorov’s theory can not be computed, at variance
with Shannon’s information.

The best account I can give of information the-
ory consists of the analysis of its founding text. In
the very introduction of “A mathematical theory of
communication”, Shannon discards semantics from
the field of his discussion, only considering as rele-
vant the fact that the message to be communicated
in just an element chosen in a certain set and that
the communication system must work regardless of
the chosen message. The problem of communica-
tion is thus basically of statistical nature, the in-
formation brought by a particular message being in
fact measured by the number of messages among
which it is chosen. Explicitly referring to Hartley,
he shows the interest of using a logarithmic mea-
sure, according to the practical, intuitive and math-
ematical viewpoints. The choice of the logarithmic
base determines the unit used for measuring infor-
mation. If the base is 2, he names this unit the bit ,
an acronym for binary digit. Among other possible
bases, he considers also 10, directly consistent with
decimal numbers, and Euler’s constant e, which is
more convenient when integrations and derivations
have to be performed. As a model of the commu-
nication process, he introduces the famous scheme
(or paradigm)

source — channel — destination

the ‘channel’ being actually split into the trans-
mitter which generates a signal, a medium subject
to noise (which he names ‘channel’ in a restricted
sense) and a receiver. He then distinguishes three
kinds of communication systems: the discrete ones
where both the message and signal are strings of
discrete symbols or signals (a typical example of
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which is Morse telegraphy); the continuous ones
where both the message and the signal are dealt
with as continuous functions (as in radio and tele-
vision); and mixed ones where both discrete and
continuous variables appear (as in pulse code mod-
ulation, PCM, transmission of speech).

The first part is naturally devoted to discrete
noiseless systems, the simplest case. He first con-
siders the noiseless discrete channel the capacity
of which he defines in information unit per time
unit. It depends on the duration of the symbols
and the constraints which determine their succes-
sion. He then considers discrete sources of which he
gives many examples: ‘natural’ languages; discrete
sources deriving from continuous ones by quan-
tization; discrete sources mathematically defined
by stochastic processes which specify the symbol
choices and their possible mutual dependence, es-
pecially in the form of Markov chains where the
probability of a choice only depends on the previ-
ous choices through the present state of the sys-
tem. He shows how the models of discrete source
he just introduced can provide a series of statisti-
cal approximations to English with an increased fi-
delity according to whether one takes into account
the frequency of letters, digrams, trigrams, . . . , or
of the frequency of words, couples, word triplets
. . . . He gives examples which look like what will
become later the exercises of Oulipo1. He graph-
ically represents the Markov chains by transition
diagrams which he then assumes to be ergodic (he
briefly explains this term). In order to evaluate the
average information rate of such a source, he states
the axioms which should be satisfied by an infor-
mation measure in terms of the probabilities which
describe it and thus obtains the entropy function
H = −

∑
pi log pi. He discusses its main properties

and defines redundancy as the difference between
the maximum possible entropy and its actual value.
He notices that the possibility of cross-word puzzles
depends on redundancy of the language. It is the
more difficult to construct a grid, the stronger the
constraints hence the higher the language redun-
dancy. He also considers coding operations aimed at
minimizing the average message length. He states
that the lower bound on this minimum length is pro-
portional to the source entropy, which is the funda-
mental theorem of channel coding, and gives some
examples of optimum source coding.

The second part deals with noisy discrete sys-

1Oulipo (OUvroir de LIttérature POtentielle) was a
group of writers interested in mathematical games and com-
binatorics. It was founded by the mathematician François
le Lionnais, and its most famous members were Raymond
Queneau and Georges Perec.

tems, i.e., where the channel input/output transi-
tion probabilities differ from 0 and 1. He then in-
troduces the quantity compatible with the entropy
definition which measures the average information
quantity that the output variable provides as re-
gards the input variable (it is called mutual infor-
mation due to its symmetry), and he defines the
channel capacity as the maximum of this quantity
with respect to all information sources which can
be connected to its input. He sets out the fun-
damental theorem of channel coding, which para-
doxically states that errorless communication of a
message is possible if a proper code is employed,
provided only that the source entropy is less that
the channel capacity. He sketches the proof of this
theorem based on the extraordinary idea of random
coding. Since he cannot exhibit a particular code
with good enough error probability, he considers a
probabilistic ensemble of codes, computes the aver-
age error probability for this ensemble and shows
that it can be made arbitrarily small by increas-
ing the word length provided the above condition is
satisfied. In the considered ensemble of codes, thus,
there exists at least a code which is at least as good
as the average. Still better, the error probability
thus obtained with a peculiar code is almost surely
(asymptotically as the word length approaches in-
finity) close to the average so it vanishes. From
this point of view, one can thus say that ‘all codes
are good’. Shannon comments these results, recog-
nizes that random coding cannot be actually imple-
mented, insists on the role of redundancy in protect-
ing against noise, gives examples of noisy channels
and computes their capacity. Finally, he gives an
example of coding which turns out to be the (7,4)
Hamming code, still unpublished when Shannon’s
paper brings out.

The third part considers the information mea-
sure for sets of functions depending on random pa-
rameters, especially the set of band-limited func-
tions. Shannon defines entropies simply derived
from those of the discrete case by replacing sums
by integrals and probabilities by probability density
functions (what is now called differential entropies,
a term that Shannon does not use). He states the
properties of these entropies homologous of the dis-
crete ones, but notices that these quantities now
depend on the coordinate system, at variance with
the discrete case entropies.

In the fourth part , he computes the capacity of
a continuous channel. The mutual information is
then expressed as a difference of entropies as de-
fined in the third part. At variance which each of
the terms in the difference, it remains unchanged
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with respect to a change of coordinates, so the def-
inition of the channel capacity does not change. He
considers the case of additive noise, and especially
that of Gaussian and white noise which is the usual
model of thermal noise, when the average received
power is given. Applying his definitions, he gets the
capacity per time unit of this channel, C, probably
the most famous formula of information theory (if
not the best understood), namely:

C = W log
P + N

N
,

where W is the bandwidth, P the average received
signal power and N that of the additive noise. He
mentions that this formula was independently found
by other researchers, especially Norbert Wiener and
W.G. Tuller. He also considers other cases where
he can only give lower and upper bounds of the
capacity.

The fifth and last part considers the extension of
what precedes to a continuous source. The informa-
tion rate cannot then be defined without introduc-
ing a fidelity criterion, two messages close enough
for this criterion being considered as equivalent.

I gave a long summary of these papers, espe-
cially as regards the introduction and the first two
ones, which contain the main innovations and the
meaning of which is not made obscure by mathe-
matical difficulties, in order to show the extreme
richness of their content. Another paper by Shan-
non, maybe less famous, remarkably complements
the preceding ones: “Communication in the pres-
ence of noise” published in 1949 [1, pp. 160–172].
Starting from the sampling theorem (often wrongly
ascribed to Shannon, although he refers to previous
works) which states that signals the spectrum of
which is limited to a frequency band of width W can
be exactly recovered from the values (or samples)
they assume at time intervals separated by 1/2W ,
he introduces a geometric representation of signals
and of additive white Gaussian noise as vectors in
a high-dimensional Euclidean space. Some unclear
properties of analog modulation systems found an
obvious explanation in this representation, which
also was much later used for the design of systems
combining modulation and coding. Shannon uses it
to sketch a direct proof of the capacity of the addi-
tive white Gaussian noise channel, i.e., to prove that
the information rate must be less than the above ex-
pression of this channel capacity so that no errors
occur. Shannon also discusses his very smart solu-
tion, referred to as water-filling, to the problem of
communication in the presence of non-white noise,
i.e., where the noise spectral density is not a con-
stant in the signal band.

Shannon’s influence

Engineers and scientists interested in information
theory formed under the banner of the Institute of
Radio Engineers (IRE, later become after a merger
with another society, IEEE) a working group which
started publishing a journal, in 1953, the IRE (then
IEEE ) Transactions on Information Theory. From
a few hundreds of pages for each of the first years,
its volume did not cease to increase up to more
than 2,000 pages yearly now. This quantitative in-
crease has nevertheless coincided with a narrowing
of the field which was covered. The issues of the
first years were indeed much more eclectic than they
are today. Problems of signal theory, automatics or
psycho-plysics found a place in it, while these top-
ics are now relevant to other journals. A reason
of this trend is a reaction against a fashion effect,
ephemeral by definition, I shall more lengthily deal
with. The problem was to avoid that works really
useful to information theory be diluted in the flood
of papers about more or less relevant applications,
and the policy of restricting the scope prevailed, af-
ter debates between the members of the working
group to which Shannon participated, as we shall
see it.

I already mentioned the reluctance initially ex-
pressed by certain mathematicians with respect to
Shannon’s work. On the contrary, it was enthu-
siastically welcome by many researchers of other
fields: genetics, neurology, psycho-physics, psychol-
ogy, economy, linguistics, sociology . . . It was un-
fortunately an irrational fad, the intensity of which
was often matched by the lack of understanding.
The vocabulary of information theory then had
often a decorative role and papers like “Informa-
tion theory, photosynthesis and religion” prolifer-
ated (this emblematic title, from an editorial of the
IRE Trans. on Information Theory in which Peter
Elias mocked at this fad [8], is of course invented
but it is hardly caricatured). Even the indeniable
influence that Shannon’s work had on first rate lin-
guists and philosophers, like Roman Jakobson or
Claude Lévi-Strauss, remained limited to its more
superficial aspects. The deepest and most innova-
tive ideas of information theory, especially the pos-
sibility of errorless transmission despite the channel
perturbations and the extraordinary method of ran-
dom coding to prove it seem to have escaped any
comment by established philosophers.

Shannon himself reacted against the fashion he
unwillingly initiated. He thus wrote an editorial in
the same journal in March 1956 [1, p. 462], which I
shall more lengthily comment when dealing with the
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future of information theory. Despite its brevity, it
seems indeed to me that it opens up a program
much of which remains to be performed.

One said once that the fecundity of a work is mea-
sured by the number of misunderstandings it gave
rise. In this case, Shannon’s work is immense! The
obituaries just published in the French newspapers
eloquently witness it, if I may write so. They are
few, short and, far from helping to know his work,
show the misunderstandings it suffers. This also
shows how the importance of Shannon’s work was
underestimated: rarely the futility of the media was
so obvious.

Certain of these misunderstandings have as sole
origin an erroneous reading. Thus, a myth that
nothing (or almost nothing) justifies sees in Shan-
non the exalter of the binary: the core of his the-
ory would be the possibility of transmitting a mes-
sage, regardless of its nature, by the means of bi-
nary symbols or signals. I wrote ‘almost’. Shan-
non could not imagine how journalists would dress
up his work and he imprudently proposed to name
‘bit’, an acronym for ‘binary digit’, the unit of in-
formation quantity which results of choosing 2 as
logarithmic base (he also contemplated other bases,
as we have seen it). A digit and a unit are ob-
jects of different nature and defining ‘bit’ as the
acronym for binary unit could maybe have avoided
the misunderstanding. It turns out that ‘bit’ is usu-
ally employed for binary digit in technical jargon,
even when it bears no information or an informa-
tion quantity less than the binary unit. Everybody
aware of information theory knows that and dis-
tinguishes with no risk of error the two meanings
of the word ‘bit’ (personally, I use the word ‘shan-
non’ for the binary unit, which avoids any ambi-
guity). Hasty and inexpert readers unfortunately
fell in the trap which was unwillingly set. I do not
know if Shannon has been angry or, more probably,
amused at that.

Other misunderstandings have a much deeper ori-
gin which it is important to analyse. The role of
semantics is a point of major divergence between
certain of the authors who tried to apply informa-
tion theory outside its original domain, and the now
unanimous opinion of engineers. The wide devel-
opment of information theory in the mathematical
and technical fields amply justified the exclusion of
semantics which is a premise in Shannon’s theory.
This exclusion actually appears as a methodologi-

cal necessity which enables distinguishing the in-
formation from both the message which bears it
and the meaning ascribed to it. On the contrary,
many people coming from different horizons, espe-

cially biologists, have felt when reading Shannon
the exclusion of semantics as a congenital defect to
be repaired. This misunderstanding is not recent.
Under the title “The mathematical theory of com-
munication” (the definite article substituted for the
indefinite one cancelled the modesty of the origi-
nal title), the two 1948 papers were reprinted as a
book as early as 1949 [9]. A lengthy postface by
the biologist Warren Weaver, then administrator of
the Rockefeller foundation, has been appended to
them. Shannon claims that he discards semantics
in his very introduction, in a few sentences, argu-
ing that the semantic content of a message has no
incidence on how the messenger works. On the con-
trary, most of the comments by Weaver deplore the
exclusion of semantics and suggest remedies for it.
Rather strangely, the two authors of the book thus
express irreconcilable points of view. Time did not
attenuate this misunderstanding. I shall try later to
analyse the reasons for it at the same time I shall
outline perspectives for the future.

The future of Shannon theory

I believe that Shannon theory has a great future
outside the technical domain, as applied to nature
sciences. I shall in the following restrict myself to
uphold this opinion as regards biology. Many en-
gineers do not share this opinion, which moreover
contradicts the one which currently prevails among
biologists.

Answering his (few) interviewers, Shannon
claimed his atheism. He saw no fundamental dif-
ference between the machines and the living things,
including men. His tinkering was maybe intended to
imitate nature (widely anticipating on François Ja-
cob!), in a pathetic way which made intuitively per-
ceptible the distance between the technical means
available in the middle of the XXe century and that
of nature, generally endowed by evolution of an ex-
treme refinement. He thus could not be hostile in
principle to the idea of applying information theory
to biology.

The short editorial of the IRE Transactions on

Information Theory I mentioned above is entitled
‘The bandwagon’. Shannon has mocked there at
speculations which referred to his work, calling for
patience and modesty. Asserting as a personal opin-
ion the rightfulness of applying his theory to sci-
ences of nature, he suggests however that this ap-
proach will be fruitful only after information theory
will be firmly enough established in its domain of
origin. One cannot but admire how lucid is this edi-
torial. Most of the speculations Shannon denounced
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fell indeed into a well deserved oblivion, whereas
information theory has confirmed its validity and
its fecundity in the mathematical and technical do-
mains; at the same time, the attempts to apply in-
formation theory to other sciences became more and
more unfrequent. One may deplore this withdrawal
into an ivory tower, but hope that the reflection ac-
quired in the technical domain will eventually en-
able applying it to the sciences of nature freed from
the näıvety and vague approximations of the first
attempts.

The fairies who leaned over Shannon’s cradle (I
think of Barbara Burks and Vannevar Bush) as well
as Norbert Wiener who had a less direct but in-
escapable influence on him were fervent advocates
of interdisciplinarity. If one defines information the-
ory as the science of symbol strings (with Shannon
and Kolmogorov) then it can obviously be applied
to biology: Crick and Watson identified in 1953 the
DNA molecule as the bearer of the hereditary in-
formation, made of a string of quaternary symbols.
That attempts aimed at applying information the-
ory to biology failed until now is not a reason to
give up (I would like to say: on the contrary). The
initial fad having passed and the misunderstanding
I mentioned as regards the role of semantics being
stronger and stronger, the biologists turned away
from information theory. After its too discreet tri-
umph in the technical domain, I think it is now ma-
ture for eventually fecund applications to biology
and perhaps physics. A mandatory condition for
the success of this ambitious plan is a clear aware-
ness of the origin of the misunderstandings which
as yet hindered it.

The comments by Weaver gave me the first ex-
ample of a misunderstanding between information
theorists and biologists which got worse with time.
Weaver worries about the congenital inability of in-
formation theory to take semantics into account.
Shannon accepts it, on the contrary. All the subse-
quent development of information theory has shown
he was right, since the exclusion of semantics never
appeared as a drawback or a brake. Information
plays with respect to semantics the role of a con-

tainer , and should not be confused with its sym-
bolic supports, i.e., messages, and still not with the
physical supports of the messages. Much more than
mastering the mathematical difficulties of some of
its chapters (but the discrete finite case, the most
important one, does not suffer such difficulties), it is
the understanding of the status of information as an
intermediate which is the key of its fruitful applica-
tion. Information is indeed abstracted from the set
of supports and messages which can bear it, but it

is also the bearer of a meaning which is completely
independent of it and not amenable to a quantita-
tive measure. The difficulty of information theory
is thus not so much intrinsic than conceptual, in-
sofar as it is the epistemological status of the main
quantity it deals with which is far from obvious. At
the turning point between the abstract and the con-
crete, information revealed itself as an unexpected
intermediate. This status is now well perceived by
the engineers who have learned by experience that
‘it works’, but not at all by the upholders of other
disciplines, especially physicists and biologists.

This reflection shows how deeply innovative
Shannon theory is. With the discovery of a mea-
surable quantity as fundamental as hidden, it is a
new world that it opened to science.
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